
Pablo Magni

Derived Equivalences of
Generalized Kummer Varieties



Pablo Magni
IMAPP, Radboud University Nijmegen
Heyendaalseweg 135, 6525 AJ Nijmegen
The Netherlands.
E-mail : p.magni@math.ru.nl

2020 Mathematics Subject Classification. — 14F08, 14J42, 14L30 (Primary);
20J06, 18G50, 20C10, 20C25, 20C30, 18C40 (Secondary).
Keywords and phrases. — Abelian varieties, derived equivalences, equivariant de-
rived categories, equivariant sheaves, generalized Kummer varieties, group cohomology
and equivariant torsors, hyperkähler varieties, integral reprsentation theory, integral
standard representations, linearization obstructions, Namikawa’s question, Orlov’s
sequence for derived autoequivalences, Ploog’s method for equivariant derived equiva-
lences, semi-homogeneous vector bundles, symmetric groups, symplectic isomorphisms,
birational equivalences.

Research supported by the Netherlands Organization for Scientific Research (NWO)
under project number 613.001.752.
Printing: Ridderprint, www.ridderprint.nl
Copyright © 2023 Pablo Magni. All Rights Reserved.

https://www.ridderprint.nl


Derived Equivalences of
Generalized Kummer Varieties

Proefschrift ter verkrijging van de graad van doctor aan de Radboud Universiteit
Nijmegen op gezag van de rector magnificus prof. dr. J.H.J.M. van Krieken, volgens
besluit van het college voor promoties in het openbaar te verdedigen op

woensdag 13 september 2023 om 12:30 uur precies

door Pablo Magni
geboren op 31 januari 1995 te Bonn, Duitsland



Promotoren:
Prof. dr. B.J.J. Moonen
Prof. dr. L.D.J. Taelman (Universiteit van Amsterdam)

Copromotor:
Prof. dr. L. Fu (Université de Strasbourg, Frankrijk)

Manuscriptcommissie:
Prof. dr. H.T. Koelink
Prof. dr. E. Macrì (Université Paris-Saclay, Frankrijk)
Prof. dr. P. Stellari (Università degli Studi di Milano, Italië)
Dr. V.A. Hoskins
Dr. M. Shen (Universiteit van Amsterdam)



Contents

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Part I. Fundamentals and preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1. Generalized Kummer varieties and abelian varieties . . . . . . . . . . . . . . . . . . 3
1.1. Hyperkähler varieties and generalized Kummer varieties. . . . . . . . . . . . . . . . . 3
1.2. Abelian varieties and their polarizations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3. Semi-homogeneous and unipotent vector bundles. . . . . . . . . . . . . . . . . . . . . . . . . 20

2. Fourier–Mukai equivalences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1. Derived categories and their (auto)equivalences. . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2. Equivariant derived categories and Ploog’s method. . . . . . . . . . . . . . . . . . . . . . . 33
2.3. Derived equivalences of abelian varieties and Kummer surfaces. . . . . . . . . . . 43

3. Group cohomology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1. Abelian group cohomology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2. Non-abelian group cohomology and equivariant torsors. . . . . . . . . . . . . . . . . . . 64

Part II. Derived equivalences of generalized Kummer varieties. . . . . . . . 71

4. The integral standard representation of Sn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.1. The integral standard representation of Sn and its dual. . . . . . . . . . . . . . . . . . 73
4.2. Group cohomology of the standard representation. . . . . . . . . . . . . . . . . . . . . . . . 78

5. Invariant derived autoequivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.1. Sn-invariant symplectic isomorphisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2. Invariant derived autoequivalences in Orlov’s sequence. . . . . . . . . . . . . . . . . . . 90

6. Equivariant derived equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.1. Invariant derived equivalences via equivariant torsors. . . . . . . . . . . . . . . . . . . . 97
6.2. Equivariant semi-homogeneous vector bundles and Orlov’s construction. . 102



vi Contents

Part III. Miscellaneous results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7. Birationality of generalized Kummer varieties . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.1. Isomorphic generalized Kummer varieties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.2. Non-birational generalized Kummer varieties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A. Code listings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

B. Summaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Samenvatting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Research Data Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Acknowledgements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Curriculum Vitae. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



Introduction

In this thesis we are concerned with derived equivalences of certain hyperkähler
varieties, namely generalized Kummer varieties. For simplicity, we work in this
introduction over an algebraically closed field k of characteristic zero.

The subject of algebraic geometry studies the geometry of algebraic varieties. We
want to pose the vague dichotomy that distinguishes their inner and outer geometry.
Here the inner geometry looks at how a variety is assembled from pieces and at objects
which are constructed inside it, like subvarieties or cycles. In contrast, the outer
geometry is concerned with objects defined/parametrized on the variety, like functions,
vector bundles, or coherent sheaves.

Part of the goal of algebraic geometry is the classification of varieties. But since
a precise classification of isomorphism classes of varieties is vastly too ambitious,
one is lead to consider notions of equivalence that are weaker than isomorphisms.
From the inner point of view, two varieties X and Y are birationally equivalent if two
Zariski-dense open subvarieties U ⊂ X and V ⊂ Y are isomorphic. From the outer
point of view, one collects all coherent sheaves on X in the derived category

Db(X) := Db(Coh(X)),

which one can view as a noncommutative incarnation of X, cf. [KS09; Kal09], and
asks when Db(X) and Db(Y ) are equivalent triangulated categories. Recall that the
derived category of coherent sheaves arises from the category of complexes of coherent
sheaves by inverting quasi-isomorphisms, cf. [HuyFM, Ch. 2]. It carries the structure of
a triangulated category and was originally introduced by Verdier as a technical device
to do homological algebra and work with derived functors, cf. [Ver77; Ver96]. One can
consider as well the (unbounded) derived category D(A) of modules on an associative
algebra or a dg-algebra A, and in this noncommutative sense the unbounded derived
category D(X) is in fact always affine, i.e. D(X) ≃ D(A), cf. [BB03, Cor. 3.1.8].

Derived equivalences. — Derived categories of coherent sheaves and their equiva-
lences are intricate objects which gain their importance for example from their role
in homological mirror symmetry, their rich interaction with moduli spaces of stable
sheaves, and since they are nowadays considered as invariants of the variety in their
own right.



viii Introduction

Let X and Y be smooth projective varieties over k. One says that X and Y

are derived equivalent if Db(X) and Db(Y ) are equivalent as k-linear triangulated
categories, that is there exists an equivalence

Φ : Db(X)→ Db(Y )

which is k-linear and preserves distinguished triangles as well as shifts. One has to
be precise with this definition, otherwise one runs the risk to obtain a notion that is
as rigid as the notion of being isomorphic. For example if the derived equivalence Φ
furthermore preserves the monoidal structure given by the derived tensor product
on X and Y respectively, then X and Y are already isomorphic, cf. [Bal02]. Let us
mention that X can also be reconstructed from the abelian category of coherent
sheaves Coh(X) by Gabriel’s theorem [Gab62], so it would be too restrictive to require
that Φ preserves the natural t-structures. By Orlov [Orl97], a derived equivalence
Φ : Db(X)→ Db(Y ) can be written as a Fourier–Mukai functor

FMP(−) := RprY,∗(Lpr∗
X(−) L⊗ P)

associated to a unique Fourier–Mukai kernel P ∈ Db(X×Y ), where prX : X×Y → X

and prY : X × Y → Y denote the coordinate projections. So derived equivalences are
more geometric in nature than their abstract definition would suggest at first sight.

Nevertheless, by a result of Bondal–Orlov [BO01], if two varieties X and Y with
ample or anti-ample canonical sheaf ωX are derived equivalent, then they are already
isomorphic. So it is natural to investigate the contrasting case of varieties X with trivial
canonical sheaf ωX ≃ OX . By the Beauville–Bogomolov decomposition theorem [Bog74;
Bea83], there are three building blocks for these varieties:

1) abelian varieties,
2) strict(1) Calabi–Yau varieties,
3) hyperkähler varieties.

That is, X can be decomposed, up to a finite étale cover, as a product of varieties
of these kinds. We refer to [HN11] for results and discussion about the interaction
between this decomposition and derived equivalences.

The first derived equivalence of non-isomorphic (even non-birational) varieties was
provided by Mukai [Muk81], who explained that an abelian variety A and its dual A∨

are derived equivalent, while usually not isomorphic; the kernel is provided by the
Poincaré bundle P on A×A∨. More generally, derived equivalences of abelian varieties
are well-understood by work of Mukai, Polishchuk, and Orlov [Muk81; Pol96; Orl02].
They explain equivalences between two abelian varieties A and B in terms of symplectic
isomorphisms, which are isomorphisms A×A∨ → B×B∨ of abelian varieties satisfying
certain properties, cf. Definition 2.3.2. We denote Orlov’s set, respectively group, of
symplectic isomorphisms by Sp′(A,B), or Sp′(A) when A = B, cf. Notation 2.3.9.
Let us also denote the group of isomorphism classes of derived autoequivalences

(1)A Calabi–Yau variety X is a smooth, proper variety with ωX ≃ OX . A strict Calabi–Yau variety
satisfies moreover Hi(X,OX) = 0 for 1 ≤ i ≤ dim(X) − 1.
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of A by Aut(Db(A)), and let Eq(Db(A),Db(B)) denote the Aut(Db(A))-torsor of
isomorphism classes of derived equivalences between A and B.

Theorem (Orlov [Orl02, §§0–4, Thm. 4.14]). — We have a short exact sequence
of groups

0→ Z×A×A∨ → Aut(Db(A))→ Sp′(A)→ 0,
and a compatible, in the sense of natural torsor actions, surjective map

Eq(Db(A),Db(B)) ↠ Sp′(A,B).

In contrast, not much is known about derived equivalences of strict Calabi–Yau
varieties. By [Bri02] two strict Calabi–Yau threefolds which are birationally equivalent
are also derived equivalent. This establishes a special case of the following conjecture
of Bondal–Orlov [BO95] and Kawamata [Kaw02; Kaw18].

Conjecture (DK-hypothesis). — If X and Y are K-equivalent, i.e. there exists
a smooth projective variety Z together with birational morphisms f : Z → X and
g : Z → Y such that f∗ωX ≃ g∗ωY , then X and Y are derived equivalent.

This conjecture does certainly not explain every derived equivalence of varieties, say
with trivial canonical bundle, as the case of abelian varieties already shows (recall that
birationally equivalent abelian varieties are automatically isomorphic). We will come
back to this in the situation of generalized Kummer varieties below.

Derived equivalences of hyperkähler varieties. — The hyperkähler case remains
tractable yet interesting. Just like elliptic curves or K3 surfaces, hyperkähler varieties
enjoy a rich geometry which at the same time is amenable to concrete studies, e.g.
via lattice theory, and thus provides an approachable testing ground for algebraic
geometry.

Hyperkähler varieties in dimension 2 are nothing other than K3 surfaces, and much
has been done in this case, see [HuyK3, Ch. 16] for an overview. We want to discuss
Kummer K3 surfaces in a bit of detail, since on the one hand they are a precursor to
generalized Kummer varieties and on the other hand we want to contrast the results
about them with the higher dimensional case later on. Given an abelian surface A,
the associated Kummer K3 surface Kum1(A) is the minimal resolution of singularities
of the quotient A/⟨−1⟩ of A by the negation involution.

Theorem (Hosono–Lian–Oguiso–Yau [HLOY03, Thm. 0.1]). — Let A and B
be abelian surfaces. Then we have

Db(A) ≃ Db(B) (0.0.1)

if and only if
Db(Kum1(A)) ≃ Db(Kum1(B)). (0.0.2)

In fact, this is also equivalent to

Kum1(A) ≃ Kum1(B). (0.0.3)
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The second logical equivalence “(0.0.2)⇐⇒ (0.0.3)” follows from the fact that one is
dealing with K3 surfaces of Picard rank ρ(Kum1(A)) = ρ(A)+16 > 11; such K3 surfaces
are isomorphic as soon as their transcendental lattices are Hodge isometric, cf. [Muk87,
Prop. 6.2]. The first logical equivalence “(0.0.1)⇐⇒ (0.0.2)” is established using the
derived Torelli theorems for K3 surfaces and abelian surfaces, and by comparing their
transcendental lattices, cf. [BM01]. Unfortunately, this approach cannot be carried
over to the case of generalized Kummer varieties discussed below. Stellari offers the
following theorem, which generalizes the case of Kummer surfaces, where one can
write Db(Kum1(A)) ≃ Db([A/⟨−1⟩]) as the derived category of coherent sheaves on
the quotient stack [A/⟨−1⟩]; see the discussion about the equivariant approach below
for more on this viewpoint.

Theorem (Stellari [Ste07, Thm. 1.1]). — If A and B are abelian varieties (not
necessarily surfaces) which are derived equivalent, i.e. Db(A) ≃ Db(B), then we still
have an equivalence of derived categories

Db([A/⟨−1⟩]) ≃ Db([B/⟨−1⟩])

of coherent sheaves on the respective quotient stacks.

In higher dimensions, there are four known types of hyperkähler varieties up to
deformations, namely Hilbert schemes of points Hilbn(S) where S is a K3 surface,
generalized Kummer varieties Kumm(A) where A is an abelian surface, and O’Grady’s
sporadic examples of dimension 6 and of dimension 10, cf. [Bea83; OGr99; OGr03]. Let
us briefly recall the definition of generalized Kummer varieties Kumn−1(A), where A
is an abelian surface. Beauville [Bea83] defines them as a fiber of the morphism

Σ ◦HC: Hilbn(A)→ A,

where HC: Hilbn(A)→ Symn(A) is the Hilbert–Chow morphism andΣ : Symn(A)→A

denotes the summation map. The morphism Σ ◦ HC is in fact an Albanese map of
Hilbn(A), cf. [Fog68, §3], and it is an isotrivial fibration. Beauville verifies then that
the fibers are hyperkähler varieties.

Regarding derived equivalences of Hilbert schemes of points, Ploog has the following
result.

Theorem (Ploog [Plo07, §3.1, Prop. 8]). — Let S and S′ be two smooth, pro-
jective surfaces. Then there exists an injective group homomorphism Aut(Db(S)) ↪→
Aut(Db(Hilbn(S))), and any derived equivalence Db(S) ≃ Db(S′) induces (via the
inflation map (0.0.4) below) a derived equivalence

Db(Hilbn(S)) ≃ Db(Hilbn(S′)).

In particular, since an abelian surface A and its dual abelian surface A∨ are derived
equivalent, we have Db(Hilbn(A)) ≃ Db(Hilbn(A∨)). We want to attribute the
following question to Namikawa [Nam02a; Nam02b], who studied the birational Torelli
problem for hyperkähler varieties and remarked on their derived equivalences in this
context.
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Question (Namikawa). — Are the generalized Kummer varieties Kumm(A) and
Kumm(A∨) derived equivalent?

This question appears natural in view of Ploog’s result about Hilbert schemes of
points and the evidence about Kummer surfaces, where we have seen that Kum1(A)
and Kum1(A∨) are in fact isomorphic. In this thesis we concern ourselves with this
question and reach the following answer as our first main theorem.

Theorem 1 (Theorems 6.1.8 and 6.2.1). — Let A be an abelian surface, let m ∈ N
be even and assume that there exists a polarization λ : A→ A∨ whose exponent e(λ)
satisfies

gcd(m+ 1, e(λ)) = 1.
Then there exist a derived equivalence

Db(Kumm(A)) ≃ Db(Kumm(A∨)).

When End(A) = Z, the assumption reduces to gcd(m + 1,deg(λ)) = 1, where
λ : A → A∨ is the polarization of minimal degree. In this situation the theorem is
sharp in the sense that Kumm(A) and Kumm(A∨) cannot be derived equivalent via
any “inflated” equivalence unless gcd(m+ 1,deg(λ)) = 1 is satisfied, cf. Remark 7.

Namikawa [Nam02a] showed that in general two generalized Kummer fourfolds
Kum2(A) and Kum2(A∨) are not birationally equivalent. Following Okawa’s [Oka21]
study of the non-birationality of Hilbert schemes of points on K3 surfaces, we treat the
case of generalized Kummer varieties and obtain in particular new examples of non-K-
equivalent but derived equivalent varieties, i.e. counterexamples to the converse of the
DK-hypothesis. For more hyperkähler examples of this kind (i.e. derived equivalent
but not K-equivalent) see [ADM16; MMY20].

Theorem 2 (Theorem 7.2.8). — There exist generalized Kummer varieties which
are derived equivalent but which are not birationally equivalent.

More precisely, let A be an abelian surface with End(A) = Z, and let deg(λ) = d2 be
the minimal degree of a polarization λ : A→ A∨. If gcd(3, d) = 1, and 4x2 − 3dy2 = 1
has an integer solution(2), then the Kummer fourfolds Kum2(A) and Kum2(A∨) are
not birationally equivalent.

Equivariant approach. — We want to explain the approach underlying Ploog’s
and Stellari’s results above as well as our Theorem 1.

The following alternative description of generalized Kummer varieties is more
suitable for our investigations. Consider the kernel A ⊗ Γn of the summation map
Σ : A×n → A, where Γn is the kernel of the summation map Zn → Z, cf. §4.1.
(The reader who desires so can understand A ⊗ Γn as an instance of Serre’s tensor
constructions, cf. [Con04, §7], [Ami18, §1].) The symmetric group Sn acts by coordinate

(2)A more general condition which is sufficient for the theorem is that some solution (x0, y0) of the
Pell equation x2 − 3dy2 = 1 satisfies that y0 is odd.
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permutations on A×n and trivially on A, so Sn acts on A⊗ Γn (and similarly on Γn),
and we get a diagram of fiber sequences

A⊗ Γn A×n A

(A⊗ Γn)/Sn Symn(A) A.

Σ

Σ

Now Symn(A) is singular, when n ≥ 2, but it admits a crepant resolution in form
of the Hilbert–Chow morphism Hilbn(A) → Symn(A). Haiman [Hai01] provides an
identification

Hilbn(A) ≃ HilbSn(A×n)
of the classical Hilbert scheme of points on A with Nakamura’s equivariant Hilbert
scheme of clusters on A×n, cf. [IN96; Rei97]. Similarly (A⊗ Γn)/Sn is singular, but it
admits a crepant resolution of singularities

HilbSn(A⊗ Γn)→ (A⊗ Γn)/Sn,

which is isomorphic to the generalized Kummer variety Kumn−1(A) associated to A.
To study the derived category of Kumn−1(A), the derived McKay correspondence

[BKR01] comes into play, which in this case says that we have equivalences of derived
categories

Db(Hilbn(A)) ≃ Db(HilbSn(A×n)) ≃ Db
Sn

(A×n)
and

Db(Kumn−1(A)) ≃ Db(HilbSn(A⊗ Γn)) ≃ Db
Sn

(A⊗ Γn)
respectively. Here Db

Sn
(−) denotes the derived category of Sn-equivariant coherent

sheaves (F, λ), which consists of complexes of coherent sheaves F endowed with an
Sn-equivariant structure λ (see below on page xvi for a definition); it can also be viewed
as the derived category Db([−/Sn]) of coherent sheaves on the quotient stack [−/Sn].

Remark. — At this point the reader might wonder why the derived equivalence of
A⊗ Γn and (A⊗ Γn)∨ (induced by the Poincaré bundle) does not immediately yield a
derived equivalence of generalized Kummer varieties Kumn−1(A) and Kumn−1(A∨).
Indeed, while (A⊗Γn)∨ is isomorphic as an abelian variety to A∨⊗Γn, the Sn-actions
are different. Instead, we have (A⊗Γn)∨ ≃ A∨⊗Γ∨

n , and Γn ̸≃ Γ∨
n are non-isomorphic

Z[Sn]-modules for n ≥ 3. See [Nam02b] and [Plo05, §4.4] for related discussions.

Let G be a finite group acting on two smooth projective varieties X and Y . Ploog’s
method [Plo05; Plo07] to construct derived equivalences of equivariant derived cate-
gories consists roughly of the following three steps:

1) Exhibit G-invariant derived equivalences.
2) Endow the kernels of these G-invariant equivalences with an G-equivariant

structure.
3) “Inflate” these G-equivariant equivalences to equivalences of equivariant derived

categories.



Introduction xiii

Let us explain more precisely what these steps mean. We consider the following three
sets of derived equivalences: First, we have the set of G-invariant derived equivalences
between Db(X) and Db(Y ), which are the equivalences commuting with the G-action
up to isomorphism. In terms of Fourier–Mukai kernels, this is

Eq(Db(X),Db(Y ))G

≃ {P ∈ Db(X × Y ) | FMP : Db(X) ∼−→ Db(Y ), and ∀g ∈ G : (g, g)∗P ≃ P}/≃.

Second, we have the set of derived equivalences between Db
G(X) and Db

G(Y ). These
are represented by kernels which are endowed with an equivariant structure λ̃ for the
(G×G)-action on X × Y , so

Eq(Db
G(X),Db

G(Y )) ≃ {(P̃, λ̃) ∈ Db
G×G(X × Y ) | FM(P̃,̃λ) : Db

G(X) ∼−→ Db
G(Y )}/≃.

Third, interpolating between the two cases above, we have the set of derived equiv-
alences Φ : Db(X) ∼−→ Db(Y ) which are endowed with an equivariant structure λ
witnessing that Φ “commutes coherently” with the G-action. Again in terms of kernels,
this is

Eq(Db(X),Db(Y ))hG := {(P, λ) ∈ Db
∆G(X × Y ) | FMP : Db(X) ∼−→ Db(Y )}/≃,

where ∆G ⊂ G×G denotes the diagonal subgroup. The notation “hG” is inspired by
the concept of homotopy fixed points.

Theorem (Ploog [Plo07, Thm. 6]). — The obstruction to endow a G-invariant
kernel of an equivalence with a G-equivariant structure takes values in the Schur
multiplier, i.e. in the sequence

Eq(Db(X),Db(Y ))hG for−−→ Eq(Db(X),Db(Y ))G δX,Y−−−→ H2(G,k×)

the image of the forgetful map for, which forgets the equivariant structure, equals the
kernel of the obstruction map δX,Y .

Furthermore, there exists an inflation map

Eq(Db(X),Db(Y ))hG infG×G
∆G−−−−−→ Eq(Db

G(X),Db
G(Y )) (0.0.4)

associated to the subgroup ∆G ⊂ G×G, which maps a derived equivalence endowed
with a G-equivariant structure to an equivalence of G-equivariant derived categories.

The upshot is that in the context of generalized Kummer varieties and Namikawa’s
question, we want to exhibit Sn-invariant derived equivalences between A⊗ Γn and
A∨ ⊗ Γn, and study their obstruction to admit an equivariant structure. We will
attack this problem in the discussion surrounding Theorem 6.

Autoequivalences of generalized Kummer varieties. — We also study au-
toequivalences of generalized Kummer varieties in the style of Orlov’s short exact
sequence

0→ Z×A×A∨ → Aut(Db(A))→ Sp′(A)→ 0
for abelian varieties, and Ploog’s short exact sequence for Kummer surfaces, which we
recall next.
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Theorem (Ploog [Plo07, §3.2]). — Let A be an abelian surface, and recall that its
subgroup of 2-torsion points is denoted by A[2]. Then we have a short exact sequence

0→ Z×A[2]×A∨[2]→ Aut(Db(A))⟨−1⟩ → Sp′(A)→ 0,

and the group of invariant autoequivalences fits into the diagram

Aut(Db(A))⟨−1⟩ ↞ Aut(Db(A))h⟨−1⟩ → Aut(Db(Kum1(A))),

where both maps have kernels isomorphic to Z/2Z.

The short exact sequence in the theorem arises by applying group cohomology to
Orlov’s sequence, where the action is induced from the negation involution of the
abelian variety A. The second diagram in the theorem is then an application of Ploog’s
method, taking into consideration the equivariant viewpoint on generalized Kummer
varieties. For generalized Kummer varieties we can prove the following.

Theorem 3 (Theorem 5.2.4). — Assume that n is odd, then we have a short exact
sequence

0→ Z×A[n]→ Aut(Db(A⊗ Γn))Sn → Sp′(A⊗ Γn)Sn → 0.

If n ̸= 2, 4 is even, we have an exact sequence of pointed sets

0→ Z×A[n]→ Aut(Db(A⊗ Γn))Sn → Sp′(A⊗ Γn)Sn
δ−→ A[2].

For n = 4, we have an exact sequence of pointed sets

0→ Z×A[4]→ Aut(Db(A⊗ Γ4))S4 → Sp′(A⊗ Γ4)S4 δ−→ A[2]×A∨[2].

We invite the reader to contrast these sequences with Ploog’s sequence for Kummer
surfaces above. In general, δ might not be a homomorphism, but in the case End(A) =
Z we remark that one can study this issue more precisely, see Theorem 5.2.4 for details.
Furthermore, we calculate groups of Sn-invariant symplectic isomorphisms as follows.

Theorem 4 (Propositions 5.1.10 and 5.1.13). —
(i) For every polarization λ : A→ A∨ of exponent e = e(λ) we have an inclusion

Γ0(ne) ⊂ Sp′(A⊗ Γn)Sn , (0.0.5)

where Γ0(ne) ⊂ SL(2,Z) denotes the Hecke congruence subgroup of level ne.
(ii) If gcd(n, e) = 1, we have

Sp′(A⊗ Γn, A∨ ⊗ Γn)Sn ̸= ∅

and it becomes a right-torsor under Sp′(A⊗ Γn)Sn .
(iii) If End(A) = Z, we can consider a polarization λ0 of minimal degree d = e(λ0)2.

Then the inclusion (0.0.5) becomes an equality, and the condition gcd(n, d) = 1
in (ii) becomes necessary in addition to being sufficient.

The sequences in Theorem 3 are the result of applying non-abelian group cohomology
to Orlov’s short exact sequence with A replaced by A⊗ Γn. So the computation of
the first group cohomology H1(Sn,Z× (A⊗ Γn)× (A⊗ Γn)∨) is a key ingredient.
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One consequence of Theorems 3 and 4 is that they provide many derived autoe-
quivalences of generalized Kummer varieties and thus they serve as a lower bound
for determining the full group of autoequivalences Aut(Db(Kumm(A))) or its image
under the cohomology representation

Aut(Db(Kumm(A)))→ GL(H•(Kumm(A)),Q).

Recently Taelman [Tae19] and Beckmann [Bec23] determined the image of the coho-
mology representation up to finite index for certain hyperkähler varieties of K3[n]-
deformation type. Crucial for the lower bound inclusion in their computation is a
large supply of derived equivalences coming from derived equivalences of K3 surfaces
via the derived McKay correspondence.

At this point, let us mention in passing the work of Meachan [Mea15] and Krug–
Meachan [KM17] on autoequivalences of generalized Kummer varieties induced by
P-functors, which act trivially on cohomology, cf. [Add16, §3.4].

Integral representation theory of symmetric groups. — We undertake a
systematic study of the standard representation Γn of the symmetric group Sn, as well
as of its dual Γ∨

n , with the particular goal of computing their first group cohomology.
This falls into the realm of integral/modular representation theory. Fortunately, the
representation theory of the symmetric group is well studied and its group cohomology
with trivial coefficients was computed in the 1960’s by topologists, who where motivated
by the consequences for the Steenrod algebra. One aspect of these computations, which
plays a particular role in our study, is Nakaoka’s cohomological stability theorem.

Theorem (Nakaoka [Nak60, Thm. 5.8, Cor. 6.7]). — Let A be an abelian group
endowed with trivial Sn-action. Then the restriction map

resSn

Sn−1
: Hk(Sn, A)→ Hk(Sn−1, A)

is an isomorphism for k < n/2; it is always surjective.

Nowadays this theorem has been revisited and re-proven several times [Qui74;
RW17; SW20; Kup21] and belongs to the area of homological stability [Wah22], which
provides powerful tools for computing the (co)homology of certain families of groups.

Regarding coefficients with non-trivial action, one can find in the literature com-
putations of some Ext-groups in the category of k[Sn]-modules, but with the caveat
that k is assumed to be a field, e.g. [KS99; Shc04; Hem09; CHN10]. Recall that
group cohomology can be viewed as such Ext-groups, namely H•(G,−) ≃ Ext•

kG(k,−).
We calculate the group cohomology H•(Sn,Γn ⊗Z A) in Nakoaka’s stable range with
arbitrary coefficients in an abelian group A in terms of the group cohomology H•(Sn, A)
of the symmetric group.

Theorem 5 (Propositions 4.2.5 and 4.2.7). — Let A be an abelian group endowed
with trivial Sn-action. For k < n/2 we have short exact sequences of group cohomology
groups

0→ Hk−1(Sn, A)/nHk−1(Sn, A)→ Hk(Sn,Γn ⊗A)→ Hk(Sn, A⊕n)[n]→ 0
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and
0→ Hk(Sn,Γ∨

n ⊗A)→ Hk+1(Sn, A) res−−→ Hk+1(Sn−1, A)→ 0.
Furthermore, for k < n/2− 1, we have the identity

Hk(Sn,Γ∨
n ⊗A) = 0.

This allows us to compute the desired first group cohomology groups, where A
is taken to be the group of rational points of an abelian variety. It turns out that
group cohomology is not only useful in the study of sequences involving groups of
autoequivalences, but by taking the viewpoint that the non-abelian group cohomology
group H1(G,Γ ) classifies G-equivariant Γ -torsors, see §3.2, one can also study fixed
points of torsors of derived equivalences. Using this we arrive at the following theorem.

Theorem 6 (Theorem 6.1.5). — Assume that n is odd, and let λ : A → A∨ be
some polarization of exponent e(λ). If gcd(n, e(λ)) = 1, then

Eq(Db(A⊗ Γn),Db(A∨ ⊗ Γn))Sn ̸= ∅ (0.0.6)

and it is a right-torsor under Aut(Db(A ⊗ Γn))Sn . If End(A) = Z, the converse
“(0.0.6) implies gcd(n, e(λ)) = 1” is true when we take λ to be the polarization of
minimal degree.

Equivariant structures and linearization obstructions. — Keeping Ploog’s
method in mind, to deduce Theorem 1, it is left to study when an invariant Fourier–
Mukai kernel admits an equivariant structure.

Let us recall a bit more precisely the definition of an equivariant structure. Let G
be a finite group acting on two smooth projective varieties X and Y over the field k.
A G-equivariant object (F, λ) ∈ Db

G(X) is an object F ∈ Db(X) endowed with a
G-equivariant structure λ (also called a G-linearization, especially in the case of line
bundles), which is given by isomorphisms λg : F ∼−→ g∗F for each g ∈ G, subject
to the cocycle condition that λ1 = idF and λgh = h∗λg ◦ λh for g, h ∈ G. We say
that F is G-invariant, if the isomorphisms λg do not necessarily satisfy the cocycle
condition. Similar to the obstruction for a projective representation to be linearized,
the obstruction for a G-invariant object F ∈ Db(X) which satisfies End(F) = k to
admit a G-equivariant structure lies in the Schur multiplier H2(G,k×). Thus, following
Ploog, we have a linearization obstruction homomorphism

δX : Aut(Db(X))G → H2(G,k×)

for autoequivalences, and a similar map

δX,Y : Eq(Db(X),Db(Y ))G → H2(G,k×),

which are compatible with each other, taking the natural Aut(Db(X))G-torsor action
into account.

For symmetric groups, we have H2(Sn,k×) = 0 for n ≤ 3 and H2(Sn,k×) ≃ Z/2Z
for n ≥ 4. So for generalized Kummer varieties of dimension 2 and 4 there is no
linearization obstruction to consider at all. Up to this point we could blackbox
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Orlov’s construction underlying his short exact sequence, but to get control over
the linearization obstructions (for n ≥ 4) we need extra information and thus we
work in §6.2 step by step through Orlov’s proof and Mukai’s construction [Muk78] of
semi-homogeneous vector bundles on which Orlov relies.

Question (Ploog [Plo05, Qst. 3.21]). — Is the obstruction map Aut(Db(X))G →
H2(G,k×) surjective in general?

A positive answer to this question would have been helpful, since then any Sn-
invariant autoequivalence in Aut(Db(X))Sn with non-trivial linearization obstruction
could be used, by composing with it, to kill any non-trivial obstruction of an equivalence
in Eq(Db(X),Db(Y ))Sn . But, we claim to know that one can answer Ploog’s question
negatively. More precisely, we claim that the obstruction homomorphism

Aut(Db(A⊗ Γn))Sn → H2(Sn,k×)

is the zero map if A is an abelian variety satisfying End(A) = Z. The proof is omitted
from this thesis for reasons of space and exposition.

Concluding remarks and questions. —

Remark 7. — Finally, we want to remark that Theorem 1 is sharp in the following
sense: Let G be a finite group acting on two varieties X and Y . A derived equivalence
Db
G(X) ∼−→ Db

G(Y ) is called inflated if its Fourier–Mukai kernel lies in the image of
the inflation map infG×G

∆G from Ploog’s theorem on page xiii. Assume n ≥ 3 and
End(A) = Z, and let d denote the minimal degree of a polarization of an abelian
surface A. Then Kumn−1(A) and Kumn−1(A∨) cannot be derived equivalent via
an inflated equivalence unless gcd(n, d) = 1. This is because the relevant set of
invariant symplectic isomorphisms in Theorem 4(ii) needs to be non-empty, which by
Theorem 4(iii) is equivalent to gcd(n, d) = 1.

Question. — Is it necessary for Kumm(A) and Kumm(A∨) to be derived equivalent
that there exists an isogeny λ : A→ A∨ of exponent coprime to m+ 1?

There is some weak evidence towards this question, or rather an arithmetic analog
of it: Frei–Honigs [FH23, Cor. 1.2] announced an example of a generalized Kummer
fourfold Kum2(A) over a number field K which cannot be derived equivalent to
Kum2(A∨) over the field K, and the abelian variety A cannot carry a polarization
defined over K whose degree is coprime to 3, since A[3] ̸≃ A∨[3].

Outline. — This thesis is divided into three parts. The first part recalls some general
theory, but the results are set up in a way to make the arguments in Part II very
efficient.

– In particular we review in Chapter 1 the algebraic geometry of generalized
Kummer varieties and abelian varieties, as well as semi-homogeneous vector
bundles on the latter.
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– Next we recall in Chapter 2 derived categories and their Fourier–Mukai equiva-
lences, also in an equivariant setting, and consider the particular cases of abelian
varieties and Kummer surfaces.

– Then we discuss in Chapter 3 the general theory of group cohomology with
coefficients in an abelian group, as well as some results in non-abelian group
cohomology in connection with equivariant torsors.

This concludes the first part of the thesis and the second part is concerned with the
proofs of our main theorems.

– In Chapter 4 we study in detail the standard representation of the symmetric
group and calculate its group cohomology and arrive at Theorem 5.

– Using this, we deduce Theorem 3 in Chapter 5, which is about Sn-invariant
derived equivalences, and we compute the Sn-fixed points in the group/set of
symplectic auto-/iso-morphisms of an abelian variety, yielding Theorem 4.

– Finally we consider in Chapter 6 derived equivalences of dual generalized Kummer
varieties by first exhibiting Sn-invariant equivalences, proving Theorem 6, and
afterwards working through Orlov’s and Mukai’s construction to get control over
the linearization obstruction, thus arriving at Theorem 1.

In Part III we collect miscellaneous results and prove in particular:
– Theorem 2 about non-birationality of dual generalized Kummer varieties.
– A description of the automorphism group of certain generalized Kummer varieties.

Conventions. — We use the following conventions throughout this thesis.
– Fields are denoted by k. We make no global assumptions about their character-

istic or algebraically closedness. Rather, such assumptions are made per section
in “Situation” paragraphs.

– The assumptions and notations in a “Situation” paragraphs are in force till the
end of the section in which they appear.

– A variety X over a field k is a scheme X which is separated and of finite type
over Spec(k).



Part I

Fundamentals and preliminaries





CHAPTER 1

Generalized Kummer varieties and abelian varieties

1.1. Hyperkähler varieties and generalized Kummer varieties

We review some facts about hyperkähler varieties. This section is expository, but
we provide a proof regarding the crepantness of the Hilbert–Chow morphism of a
generalized Kummer variety which aligns well with the calculational nature of later
sections of this thesis. See [Huy99] for a much more comprehensive summary of
classical results about hyperkähler varieties.

1.1.1. Situation. — We work over an algebraically closed field k of characteristic 0.

1.1.2. Definition (Hyperkähler varieties). — A hyperkähler variety is a smooth
projective variety X over k such that

(i) H0(X,Ω2
X/k) is generated by a nowhere degenerate 2-form σ, and

(ii) X is simply connected, i.e. πét
1 (X,pt) = 0.

1.1.3. — A hyperkähler variety X is even dimensional, since the nowhere degenerate
2-form σ endows the tangent spaces of X with the structure of a symplectic vector
space. The canonical sheaf ωX of X is trivial since the Pfaffian of σ provides a nowhere
vanishing global section of the line bundle ωX .

1.1.4. Remark. — If k = C is the field of complex numbers, one can replace the étale
fundamental group in Definition 1.1.2 by the topological fundamental group π1(Xan,pt).
Indeed, if π1(Xan,pt) is zero then also its profinite completion πét

1 (X,pt) is zero;
following [Bin21, Lem. 3.1.3], the converse implication can be deduced from the
Beauville–Bogomolov decomposition theorem, cf. [Bea83, Thm. 1].

1.1.5. Example (K3 surfaces). — In dimension 2 a hyperkähler variety is nothing
other than a K3 surface, which is defined as a smooth projective surface such that
Ω2
X/k ≃ OX and H1(X,OX) = 0.
Indeed, condition (i) in Definition 1.1.2 just means that the line bundle ωX ≃ Ω2

X/k
has a nowhere vanishing section. Regarding (ii) we have by Hodge symmetry that
dimk H1(X,OX) = dimk H0(X,Ω1

X/k) and the latter vanishes when X is a hyperkähler
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variety, cf. [Bea83, Prop. 3.(ii)](1); conversely a K3 surface X has Euler characteris-
tic χ(X,OX) = 2, so any finite connected étale cover of X must be trivial by looking
at its Euler characteristic, cf. [HuyK3, Rem. 1.2.3].

1.1.6. Example (Kummer surfaces). — A particular class of K3 surfaces, which
are generalized in Example 1.1.10 to higher dimensions, are the Kummer surfaces.
Let A be an abelian surface and denote the negation involution of A by [−1] : A→ A.
The fixed points of this involution are exactly the sixteen 2-torsion points A[2] ⊂ A,
cf. Example 1.2.13. The quotient A/⟨[−1]⟩ has rational double point singularities, and
its minimal resolution

S → A/⟨[−1]⟩
is a K3 surface which is called a Kummer surface and denoted by Kum1(A), cf. [HuyK3,
Ex. 1.1.3.(iii)].

One can obtain this minimal resolution by first blowing up the 2-torsion points
of A and afterwards taking the quotient by the involution induced by the negation
map. Then the divisor classes [Ei] of the quotients of the 16 exceptional divisors Ei
are a linearly independent set in the Néron–Severi group NS(S). In fact we have the
identity

ρ(S) = ρ(A) + 16
for the Picard rank ρ(S) = rk(NS(S)), cf. [HuyK3, §3.2.5].

1.1.7. — Recall that a resolution of singularities f : X̃ → X is called crepant if
f∗ωX ≃ ωX̃ , where ωX (respectively ω

X̃
) denotes the canonical sheaf of X (respectively

of X̃).(2) Note that a crepant resolution of a normal surface is automatically minimal
and in particular it is unique. To see this use the ramification formula [IshIS, Thm. 6.1.7]
(applied to a morphism from a crepant to a minimal resolution) and the description of
the Picard group of a blowup as the direct sum of the Picard group of the base plus
the classes of exceptional divisors.

The following proposition should be well-known to the experts; we provide a proof
as a didactic preparation for Proposition 1.1.15 below.

1.1.8. Proposition. — The resolution of singularities S → A/⟨[−1]⟩ in Exam-
ple 1.1.6 is crepant.

Proof. — For notation let G := Z/2Z act via [−1] on A with quotient A/⟨[−1]⟩.
Since we know that S is a K3 surface, we have ωS ≃ OS , so it suffices to show that
ωA/G ≃ OA/G. Set A◦ := A \ A[2], then G acts freely on A◦ and the quotient map

(1)Alternatively, one could use the Hurewicz theorem in étale cohomology [FuECT, Prop. 5.7.20]
to conclude that H1

ét(X,Zℓ) = 0. Over C one can then use the comparison of étale and singular
cohomology, and the Hodge decomposition to arrive at the desired vanishing H1(X,OX) = 0.
(2)To make sense of the canonical sheaf ωX , either assume that X is quasi-projective and define ωX

as the dualizing sheaf, cf. [IshIS, Def. 5.3.5], or assume that X is normal and define ωX := ȷ∗ωXreg ,
where ȷ : Xreg ◦↪→ X is the inclusion of the non-singular locus. In the latter case one can also view
ωX as the divisorial sheaf associated to the closure of a canonical Weil divisor on Xreg.
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f : A◦ → A◦/G is étale. Since ω−/k is a sheaf on the small étale site of A◦/G, the
sheaf condition for the covering f provides the equalizer sequence(3)

0→ H0(A◦/G, ω−/k)→ H0(A◦, ω−/k) ⇒ H0(A◦ ×G,ω−/k),

where the upper map sends a form ω to (ω)g∈G and the lower map sends it to (g∗ω)g∈G.
This means that

H0(A◦/G, ω−/k) ≃ H0(A◦, ω−/k)G.
The abelian variety A has trivial cotangent bundle Ω1

A ≃ OAdz1 ⊕ OAdz2, where
dz1, dz2 shall be considered as abstract symbols (not to be confused with the differential
of a non-existent global 0-form). So the canonical bundle ωA is generated by the global
nowhere vanishing form vol := dz1 ∧ dz2. Since [−1]∗ vol = vol shows that vol is G-
invariant, it descends to a global nowhere vanishing form vol on A◦/G, which witnesses
that ωA◦/G ≃ OA◦/G. Finally, since A/G is normal as the categorical quotient of a
normal variety, we have ωA/G ≃ j∗ωA◦/G, where j : A◦/G→ A/G denotes the open
immersion, cf. [IshIS, Cor. 5.3.9], and by reflexivity of OA/G we have OA/G ≃ j∗OA◦/G,
cf. [IshIS, Thm. 5.1.11]. This shows that

ωA/G ≃ j∗ωA◦/G ≃ j∗OA◦/G ≃ OA/G.

1.1.9. Example (Hilbert schemes of points). — For a more detailed explanation
see [FGAex, Ch. 7]. Let S be a smooth projective surface. The symmetric group Sn
acts on the variety S×n by permuting the factors. The n-th symmetric product is
defined as the quotient

Symn(S) := S×n/Sn
and is a parameter space for effective 0-cycles on S of degree n, which are written as
formal sums of points. Related to this construction is the Hilbert scheme of points
Hilbn(S) which is a projective variety parametrizing closed subschemes Z of S of
length dimk H0(Z,OZ) = n.

The symmetric product will be singular, cf. [FGAex, Ex. 7.1.3.(2)], and in this
regard the Hilbert scheme of points on the surface is better behaved since it is smooth
and irreducible, cf. [Fog68], [FGAex, §7.2]. They are related by the Hilbert–Chow
morphism

HC: Hilbn(S)→ Symn(S), Z 7→
∑
p∈S

dim(OZ,p)[p],

which is in fact a resolution of singularities, cf. [Fog68], [FGAex, §7.1, Thm. 7.3.4].
If S has trivial canonical bundle ωS ≃ OS , Beauville shows that Hilbn(S) admits a

closed 2-form σ ∈ H0(Hilbn(S),Ω2
Hilbn(S)) which is nowhere degenerate, cf. [Bea83, §6,

Prop. 5]. In fact the arguments generalize to show that the Hilbert–Chow morphism
is a crepant resolution of singularities whenever S is a smooth surface. When S is
a K3 surface, then Hilbn(S) is simply connected and dim H0(Hilbn(S),Ω2

Hilbn(S)) =
dim H0(S,Ω2

S) = 1, so Hilbn(S) is a hyperkähler variety of dimension 2n, cf. [Bea83,
Prop. 6, Thm. 3]. In fact, over the complex numbers and assuming n ≥ 2, we have an

(3)This argument was inspired from [MO, Answer 226902].

https://mathoverflow.net/a/226902
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isomorphism of integral Hodge structures

H2(Hilbn(S),Z) ≃ H2(S,Z)⊕ Zδ, (1.1.1)

where δ ∈ H1,1(Hilbn(S)) is 1/2 times the class of the ‘exceptional divisor’, cf. [Bea83,
Prop. 6, Rem.].

1.1.10. Example (Generalized Kummer varieties). — Following [Bea83, §7],
let A be an abelian surface. Then Hilbn(A) is not a hyperkähler variety since it is
not simply connected. Instead, since A carries a group structure, we can consider
the summation morphism Σ : A×n → A. It is equivariant for the permutation action
on A×n, so it descends to a morphism Symn(A)→ A, and via composition with the
Hilbert–Chow morphism it becomes a morphism

Σ : Hilbn(A)→ Symn(A)→ A,

which is in fact the Albanese map, cf. [Fog68, §3], [Yos01, §4.3.1]. The generalized
Kummer variety Kumn−1(A) is defined as the fiber Σ−1(0) ⊂ Hilbn(A).

1.1.11. Proposition. — Let A be an abelian surface. Then the generalized Kummer
variety Kumn−1(A) is a hyperkähler variety of dimension 2(n− 1).

Proof. — We provide a sketch; for details see [Bea83, Prop. 7, Prop. 8, Thm. 4].
The summation map Σ is equivariant with respect to the translation action of A on
Hilbn(A) and the action (a, b) 7→ na+ b of A on itself. So Σ is smooth and isotrivial,
i.e. we have a pullback diagram

A×Kumn−1(A) Hilbn(A)

A A.

act

⌜
Σ

[n]

Next, Kumn−1(A) is simply connected: Beauville [Bea83, Lem. 1] explains
that π1(Hilbn(A))→ π1(Symn(A)) is an isomorphism and that the homomorphism
φ : π1(A)→ π1(Symn(A)) induced from the inclusion of a factor A ↪→ A×n → Symn(A)
is in fact the abelianization map. But since π1(A) ≃ Z2n is already abelian, φ is an
isomorphism, and since φ splits the map Σ∗ : π1(Symn(A))→ π1(A), the latter is an
isomorphism as well. Considering the long exact homotopy sequence associated to the
fibration Kumn−1(A)→ Hilbn(A)→ A and using that π2(A) ≃ π2(S1)2n = 0, we see
that Kumn−1(A) is simply-connected.

The desired nowhere degenerate 2-form σ′ on Kumn−1(A) arises as the restriction
of the 2-form σ on Hilbn(A) from Example 1.1.9. If n = 2, we are already done, since
σ′ witnesses that ωKum1(A) ≃ Ω2

Kum1(A) ≃ OKum1(A) is the trivial line bundle. To
check that σ′ generates the space of 2-forms when n ≥ 3, Beauville establishes an
isomorphism of Hodge structures

H2(Kumn−1(A),C) ≃ H2(A,C)⊕ Cδ,
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where δ ∈ H1,1(Kumn−1(A)). So we have

dim H0(Kumn−1(A),Ω2) = dim H0(A,Ω2
A) = dim H0(A,OA) = 1.

The isomorphism of Hodge structures is proven along the following lines. The restriction
map H2(Hilbn(A),C) → H2(Kumn−1(A),C) is surjective, and together with the
vanishing of H1(Kumn−1(A),C) by simply-connectedness, the Serre spectral sequence
leads to a short exact sequence

0→ H2(A,C) Σ∗

−−→ H2(Hilbn(A),C)→ H2(Kumn−1(A),C)→ 0.

The argument is finished by describing H2(Hilbn(A),C) similarly as in (1.1.1).

1.1.12. — For the description of generalized Kummer varieties via equivariant Hilbert
schemes in ¶1.1.13, we need to discuss Nakamura’s equivariant Hilbert scheme of
clusters, cf. [IN96; Rei97; Blu11]. Let G be a finite group which acts faithfully on a
reduced quasi-projective variety X. The equivariant Hilbert scheme G-Hilb(X) is a fine
moduli space parametrizing “G-clusters”, i.e. 0-dimensional subschemes Z ↪→ X which
are G-invariant and whose coordinate ring H0(Z,OZ) is isomorphic to the regular
representation k[G] of G. In particular, any G-cluster has length dimk H0(Z,OZ) = #G
and is supported on a G-orbit, but the latter may be endowed with a plethora of
unreduced structures. An example of a general G-cluster is a free cluster, consisting of
#G distinct points (indeed, by faithfulness of the action, there exists an open subset
of X on which G acts freely).

As in the case of Hilbert schemes of points, there is a projective Hilbert–Chow
morphism

HC: G-Hilb(X)→ X/G, Z 7→ (Z/G)red

assigning to a G-cluster the orbit it is supported on. It is not clear whether G-Hilb(X)
is irreducible, but there is a preferred component containing the free G-clusters, which
we denote by HilbG(X). Then the restriction of the Hilbert–Chow morphism

HC: HilbG(X)→ X/G

is a birational surjective morphism which is an isomorphism over the locus of free
orbits.

One can recover the Hilbert scheme of points on a surface as an instance of the
equivariant Hilbert scheme. Let S be a smooth projective surface, then Haiman [Hai01]
provides an identification

Hilbn(S) ≃ HilbSn(S×n)
of the usual Hilbert scheme of points on S with an Sn-equivariant Hilbert scheme of
clusters.

1.1.13. — Similarly to the description of a Hilbert scheme of points as a crepant
resolution of the symmetric product in Example 1.1.9, one can also construct generalized
Kummer varieties as resolutions of singularities of certain singular quotients.

Let A be an abelian surface. Consider the kernel A⊗ Γn of the summation map
Σ : A×n → A, where Γn is defined to be the kernel of the summation map Zn → Z,
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see §4.1 for details. The symmetric group Sn acts by coordinate permutations on A×n

and trivially on A, so we get a diagram of fiber sequences

A⊗ Γn A×n A

(A⊗ Γn)/Sn Symn(A) A,

⌜

Σ

Σ

where one verifies that the fiber in the bottom row is indeed the quotient (A⊗ Γn)/Sn
using the fact that the morphism in the middle is a universal categorical quotient
in characteristic zero, cf. [MFG, Thm. 1.1]. We have already seen that Symn(A)
is singular, but it admits a crepant resolution in form of the Hilbert–Chow mor-
phism Hilbn(A)→ Symn(A). By ¶1.1.12 we can make the identification Hilbn(A) ≃
HilbSn(A×n). Similarly (A⊗ Γn)/Sn is singular, but it admits a crepant resolution of
singularities

HilbSn(A⊗ Γn)→ (A⊗ Γn)/Sn,
which is once again the generalized Kummer variety Kumn−1(A) ≃ HilbSn(A⊗ Γn),
cf. Propositions 1.1.14 and 1.1.15.

The following propositions seem to appear implicitly in the literature, so we consider
it worthwhile to spell them out and provide arguments.

1.1.14. Proposition. — We have an isomorphism Kumn−1(A) ≃ HilbSn(A⊗ Γn)
which is compatible with the “Hilbert–Chow” morphisms Kumn−1(A)→ (A⊗ Γn)/Sn
and HilbSn(A⊗ Γn)→ (A⊗ Γn)/Sn.

Proof. — Using Haiman’s identification, cf. ¶1.1.12, we have a cartesian diagram

Kumn−1(A) HilbSn(A×n)

(A⊗ Γn)/Sn Symn(A).

⌜ HC

The closed immersion A⊗ Γn ↪→ A×n induces a closed immersion HilbSn(A⊗ Γn) ↪→
HilbSn(A×n), cf. [Blu11, Thm. 5.1] and [SP, Tag 0B97], which factors through the fiber
product Kumn−1(A) as a closed immersion φ : HilbSn(A⊗ Γn) ↪→ Kumn−1(A). Since
generalized Kummer varieties are reduced, it suffices to show that φ is surjective in
order for it to be an isomorphism. But the image of φ is closed, since φ is proper, and
it contains the dense open subset of free orbits, so it exhausts all of Kumn−1(A).

1.1.15. Proposition. — The resolution of singularities Kumn−1(A) ≃ HilbSn(A⊗
Γn)→ (A⊗ Γn)/Sn is crepant.

Proof. — As in the proof of Proposition 1.1.8, it suffices to show that the canonical
sheaf ω(A⊗Γn)/Sn

is trivial, since we already know that ωKumn−1(A) is trivial. Indeed,
since Σ : Hilbn(A)→ A is an isotrivial fibration, the normal bundle of the subvariety
Kumn−1(A) ⊂ Hilbn(A) is trivial, so

ωKumn−1(A) ≃ ωHilbn(A)|Kumn−1(A) ≃ OKumn−1(A)
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by adjunction. Using the same argument on the level of symmetric products, we could
conclude after checking that ωSymn(A) is trivial.

We follow a slightly more verbose proof, foreshadowing techniques that play an
essential role in Part II. Using that Ω1

A is free with basis denoted by the abstract
symbols(4) dz, dz′, and considering n copies dzi, dz′

i of this basis, we see that Ω1
A×n

is free with basis dz1,dz′
1, . . . ,dzn,dz′

n; we have for the i-th canonical inclusion
ȷi : A → A×n that dȷi = pri is the i-th projection map. Since A ⊗ Γn is a fiber
of the summation map, we have Ω1

A⊗Γn
≃ Ω1

A×n /⟨im(dΣ)⟩. Using that each ȷi
splits the summation map Σ : A×n → A, we see that dΣ(dz) = dz1 + · · ·+ dzn and
dΣ(dz′) = dz′

1 + · · ·+ dz′
n, and hence

Ω1
A⊗Γn

≃ (OA⊗Γn
⊗ Γ∨

n)⊕2 ≃ Ω1
A⊗Γ∨

n ,

where the dual standard representation Γ∨
n of Sn is defined as the cokernel of the

diagonal map Z → Zn, cf. Definition 4.1.3. Taking determinants yields ωA⊗Γn ≃
OA⊗Γn ⊗ det(Γ∨

n)2. Finally det(Γ∨
n) is the sign representation of Sn, so its square is

trivial, which means that we are able to find a nowhere vanishing global n-form ω

which is Sn-invariant. Concretely, we could take

ω = dz1 ∧ dz′
1 ∧ · · · ∧ dzn−1 ∧ dz′

n−1 ≡ dz2 ∧ dz′
2 ∧ · · · ∧ dzn ∧ dz′

n, (1.1.2)

using the relations dΣ = 0. We conclude as in the proof of Proposition 1.1.8.

1.1.16. Remark. — The information gained in the proof of Proposition 1.1.15 tells
us the following about the singularities of X = (A⊗Γn)/Sn. The singularities of X are
(i) normal, since X is a categorical quotient of a normal variety, (ii) Cohen–Macaulay,
since X is the quotient of a regular variety by a linearly reductive group, cf. [HR74,
Main Thm.], (iii) Gorenstein, since ωX is invertible, cf. [IshIS, Def. 6.2.1], (iv) canonical,
since HC∗ ωX ≃ ωKumn−1(A), cf. [IshIS, Def. 6.2.4], (v) rational, since they are canonical,
cf. [IshIS, Thm. 6.2.12].

1.1.17. Remark. — The generalized Kummer varieties of Example 1.1.10 are indeed
a generalization of the Kummer surfaces of Example 1.1.6. For n = 2 we have an
isomorphism

A ∼−→ A⊗ Γ2, a 7→ (a,−a)
under which the permutation S2-action on the right hand side corresponds to the
action of Z/2Z ≃ S2 via the negation morphism [−1] : A→ A on the left hand side.
So we have an isomorphism

A/⟨[−1]⟩ ≃ (A⊗ Γ2)/S2

of singular surfaces, and since the generalized Kummer variety Kum1(A) described in
¶1.1.13 is a crepant resolution of the right hand side, it must be isomorphic to the
Kummer surface described in Example 1.1.6 by ¶1.1.7.

(4)Not to be confused with the differential of some non-existent global 0-form.
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1.1.18. — We list a couple of auxiliary facts about hyperkähler varieties and gener-
alized Kummer varieties in particular.

(i) Besides the Hilbert schemes of points on a K3 surface and the generalized
Kummer varieties, there are currently only two other deformation classes of
hyperkähler varieties known, namely O’Grady’s exceptional examples of dimen-
sion 6 and of dimension 10, cf. [OGr99; OGr03].

(ii) Strengthening the description of cohomology mentioned in the proof of Proposi-
tion 1.1.11, when n ≥ 3, there is an isometry of integral Hodge structures

H2(Kumn−1(A),Z) ≃ H2(A,Z)⊕ Zδ,

where the left hand side is endowed with the Beauville–Bogomolov–Fujiki form
(cf. [Bea83, Thm. 5], [Fuj87, Thm. 4.7]), and on the right hand side we have

δ2 = −2n and δ ∈ H1,1(Kumn−1(A)),

cf. [Yos01, Lem. 4.10, Prop. 4.11]. In fact 2δ = [E], where E is the exceptional
divisor of the Hilbert–Chow morphism restricted to Kumn−1(A). In particular
the second Betti number is b2((Kumn−1(A)) = b2(A) + 1 = 7, and the Néron–
Severi group is NS(Kumn−1(A)) ≃ NS(A)⊕ Zδ.

(iii) On the other hand we have b2(Hilbn(S)) = b2(S) + 1 = 23, when n ≥ 2. So
higher dimensional generalized Kummer varieties and Hilbert schemes of points
on K3 surfaces are never birationally equivalent, since Betti numbers (even
Hodge numbers) are birational invariants for smooth projective varieties with
trivial canonical bundle, cf. [Bat99].

(iv) The Hodge numbers of generalized Kummer varieties are known in the form of
a generating function for the Hodge polynomial, cf. [GS93, Cor. 1]. We provide
the Hodge diamonds for a generalized Kummer fourfold as an example in Fig. 1.

1

0 0

1 5 1

0 4 4 0

1 5 96 5 1

0 4 4 0

1 5 1

0 0

1

Figure 1. Hodge diamond of a generalized Kummer fourfold
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1.2. Abelian varieties and their polarizations

In this section we review the facts about abelian varieties which we will need in
subsequent sections. In particular, we discuss the groups of homomorphisms between
an abelian variety A and its dual A∨ when End(A) = Z, and we discuss the notion
of dual polarizations. As general references we recommend and use [MumAV] and
[EGM]. Only Proposition 1.2.27 is somewhat original.

1.2.1. Situation. — Let A and B be abelian varieties over a field k. Let g = dim(A)
denote the dimension of A; we are ultimately mainly interested in the case g = 2 of
abelian surfaces.

1.2.2. Definition (Abelian varieties). — A variety A over a field k together with
the structure of an algebraic group on A over k is called an abelian variety if A is
connected, smooth, and proper.

A homomorphism f : A→ B between two abelian varieties A and B is a morphism
A→ B of varieties which is compatible with the respective group structures.(5)

1.2.3. Notation. — Denote by Hom(A,B) ⊂ Mork(A,B) the set of homomorphisms
between A and B. When we want to stress that we use homomorphisms or automor-
phisms of abelian varieties, we write HomAV(A,B) and AutAV(A), respectively.

1.2.4. Proposition. — Let A be an abelian variety over a field k, then
(i) A is projective, and
(ii) the group law of A is commutative.

Proof. — See [MumAV, §6, Application 1] and [MumAV, §4, Cor. 1], respectively.

1.2.5. Remark. — Over the complex numbers k = C, the analytification Aan of an
abelian variety A is a compact complex analytic group, so it is a complex torus, cf.
[MumAV, §1, (2)].

So we have a homeomorphism Aan ≃ R2g/Z2g ≃ (S1)×2g, where S1 denotes the
topological 1-sphere. One knows that H•(S1,Z) ≃ Z[x]/(x2), so by the Künneth
theorem we can write

H•((S1)×2g,Z) ≃
⊗

i=1,...,2g
H•(S1,Z)

as a tensor product of graded commutative rings. In particular, we see that

Hk(Aan,Z) ≃ ∧k H1(Aan,Z) ≃ ∧k(H1(S1,Z)⊕2g).

1.2.6. Example. — An abelian variety of dimension g = 1 is just an elliptic curve.
Let A and B be abelian varieties, then their product A×B is again an abelian variety.
If G ⊂ A is a closed subgroup scheme, then the (fppf) quotient A/G exists and is
again an abelian variety, cf. [EGM, Thm. 4.39, Ex. 4.40].

(5)In the definition of abelian varieties, smoothness is automatic in characteristic 0, cf. [SP, Tag 047N].
For a morphism of abelian varieties f : A → B to be a homomorphism, it suffices to require the
compatibility f(0A) = 0B , where 0A ∈ A(k) and 0B ∈ B(k) denote the identity elements of the group
structures on A and B, respectively, cf. ¶1.2.7.
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Let C be a smooth, proper curve of genus g, then its Jacobian Jac(C) is the identity
component Pic0

C/k of the Picard scheme PicC/k, and as such the “moduli space of
degree 0 line bundles on C”. The Jacobian Jac(C) is an abelian variety of dimension g,
cf. [EGM, Ch. 14]. Coming back to elliptic curves, an elliptic curve E is canonically
isomorphic to its own Jacobian Jac(E).

1.2.7. Morphisms of abelian varieties. — For each a ∈ A there is a translation
morphism ta : A→ A mapping b 7→ a+ b. If f : A→ B is any morphism between two
abelian varieties, then there exists b ∈ B such that tb ◦ f becomes a homomorphism of
abelian varieties, in fact b = −f(0), cf. [MumAV, §4, Cor. 1].

A homomorphism f : A×B → A′ ×B′ between products of abelian varieties can
be written in matrix form as

f =
(
f1 : A→ A′ f2 : B → A′

f3 : A→ B′ f4 : B → B′

)
,

meaning f(a, b) = (f1(a) + f2(b), f3(a) + f4(b)) for (a, b) ∈ A×B.

1.2.8. — The group Pic0(A) of line bundles algebraically equivalent to OA consists
of line bundles L ∈ Pic(A) such that t∗

aL ≃ L for every a ∈ A. The dual abelian
variety A∨ is the fine moduli space parametrizing (rigidified) line bundles algebraically
equivalent to OA. It is an abelian variety of dimension dim(A∨) = dim(A), cf. [EGM,
Thm. 6.18, Cor. 7.22] or [MumAV, §13]. In particular

A∨(k) = Pic0(A),

and there exists the Poincaré line bundle P ∈ Pic(A×A∨) satisfying

Pα := P|A×{α} ≃ L

exactly when α ∈ A∨(k) corresponds to the line bundle L, and the rigidification condi-
tion P|{0}×A∨ ≃ OA∨ . The construction of the dual abelian variety is contravariantly
functorial: Given a homomorphism f : A→ B, the dual morphism f∨ : B∨ → A∨ is
induced from the map pulling back line bundles on B to A. The dual morphism f∨

is again a homomorphism since f∗OB ≃ OA. Furthermore, if g : A → B is another
homomorphism, we have the identity (f + g)∨ = f∨ + g∨, cf. [EGM, Cor. 7.17].

The variety A∨ deserves the name “dual abelian variety” because of the follow-
ing: Using the description as a fine moduli space, we can specify a morphism in
Mor(A, (A∨)∨) using a family of algebraically trivial line bundles on A∨ parametrized
by A. Thus the Poincaré bundle P corresponds to the “evaluation” morphism

ev: A ∼−→ A∨∨, (1.2.1)

which is an isomorphism, cf. [EGM, Thm. 7.9]. More precisely, to get a morphism,
P should satisfy P|A×{0} ≃ OA and P|{a}×A∨ ∈ Pic0(A∨) for every a ∈ A. The latter
condition can be checked just at a = 0, cf. [EGM, Lem. 7.12], but P|{0}×A∨ ≃ OA∨ by
‘rigidity’, cf. [EGM, ¶6.2].
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1.2.9. — Let A1 and A2 be abelian varieties, which are embedded into the product
A1×A2 via the i-th coordinate embeddings ιi : Ai ↪→ A1×A2. Then the homomorphism

(ι∨1 , ι∨2 ) : (A1 ×A2)∨ → A∨
1 ×A∨

2

is an isomorphism of abelian varieties, cf. [EGM, Exer. 6.2].

1.2.10. — Let 0→ A→ B → C → 0 be a short exact sequence of abelian varieties.
Dualizing it, we obtain again a short exact sequence of abelian varieties

0← A∨ ← B∨ ← C∨ ← 0.

This can conceptually be explained by viewing (the rational points of) the dual
abelian variety A∨ as the extension group Ext1

CAG/k(A,Gm) in the abelian category
of commutative algebraic groups over k, cf. [SerAGC, VII.3.16, Thm. 6] or [EGM,
Thm. 8.9], and using the facts that Ext2

CAG/k(A,Gm) = 0 by [OorCGS, Prop. 12.3],
and HomCAG/k(A,Gm) = 0 since Gm is affine and A is proper and connected.

In contrast to this, if 0→ K → A→ B → 0 is a short exact sequence where K is
finite, then we obtain a short exact sequence

0→ KD → B∨ → A∨ → 0,

where KD “=” Hom(K,Gm) is the Cartier dual of the finite commutative algebraic
group K, cf. [EGM, Thm. 3.22, Thm. 7.5].

1.2.11. — Given a line bundle L ∈ Pic(A), there is a homomorphism φL : A→ A∨

given on points by
φL(a) = t∗

aL⊗ L∨,

cf. [EGM, Cor. 2.10, §6.3]. So we have φL = 0 exactly when L ∈ Pic0(A). In contrast,
if L is ample, then φL has finite kernel, cf. [EGM, Lem. 2.19]. The homomorphism
φL : A→ A∨ is symmetric, which means that

φL = φ∨
L ◦ ev .

In fact, over an algebraically closed field k, this leads to an isomorphism

NS(A) := Pic(A)/Pic0(A) ∼−→ Homsym(A,A∨)

of the Néron–Severi group of A with the group Homsym(A,A∨) of symmetric homo-
morphisms, cf. [EGM, 7.26, Cor. 11.3]. Over an arbitrary field k, this holds true when
defining NS(A) as the k-rational points of the fppf-quotient PicA/k /Pic0

A/k of the
Picard scheme PicA/k modulo its connected component Pic0

A/k.
Regarding the interplay of the morphism φL with dual morphisms, we have for a

homomorphism f : A→ B and a line bundle L ∈ Pic(B) a commutative diagram

A B

A∨ B∨

φf∗L

f

φL

f∨

(1.2.2)

which follows from the formula f ◦ ta = tf(a) ◦ f , cf. [EGM, Prop. 7.6].
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1.2.12. Isogenies. — A homomorphism f : A→ B is called an isogeny if it is finite,
flat(6), and surjective. When dim(A) = dim(B), this is equivalent to asking that
the kernel ker(f) ⊂ A is a finite algebraic group, or that f is surjective, cf. [EGM,
Prop. 5.2]. Let f be an isogeny, then the degree deg(f) of f is defined as the rank of
the kernel ker(f).(7) By ¶1.2.10, the dual morphism f∨ : B∨ → A∨ is again an isogeny
of degree deg(f∨) = deg(f).

1.2.13. Example. — Assume A ̸= 0. For each n ∈ Z we have an endomorphism
[n] : A → A mapping a 7→ n · a. This provides a canonical inclusion Z ⊂ End(A).
Denote by

A[n] := ker([n])
the subgroup scheme of n-torsion points of A. Assume that char(k) ∤ n for (1.2.3) and
(1.2.4). For n ̸= 0 we have that [n] is an isogeny of degree

#A[n] = deg([n]) = n2g, (1.2.3)

cf. [MumAV, §6, App. 2–3]; the equality on the right hand side holds without any
assumption on the characteristic of k. In fact, the structure theorem of finite abelian
groups leads to an isomorphism

A[n](k) ≃ (Z/nZ)2g, (1.2.4)

where the left hand side is the group of geometric n-torsion points, cf. [EGM, Cor. 5.11].
By the surjectivity of [n], we see that the group A(k) of geometric points of A is
n-divisible for each 0 ̸= n ∈ Z, i.e. for each a ∈ A(k) there exists some a′ ∈ A(k) such
that na′ = a. Lastly, we have the identity [n]∨ = [n] since taking duals commutes
with taking sums of homomorphisms.

1.2.14. — The map [n] : A→ A is in fact a separable isogeny, i.e. étale, if char(k) ∤ n,
cf. [EGM, Prop. 5.6]. If furthermore k is algebraically closed, we deduce from Exam-
ple 1.2.13 that it is a Galois cover with respect to the group A[n](k), i.e. we have a
fibre product square

A[n](k)×A A

A A,

pr2

act ⌜ [n]

[n]

(1.2.5)

where A[n](k) acts on A by translations, cf. [SzaGCF, Prop. 5.3.16]. Let L ∈ Pic(A)
be a line bundle, then we have

[n]∗[n]∗L ≃ act∗ pr∗
2L ≃

⊕
a∈A[n](k)

ta,∗L ≃
⊕

a′∈A[n](k)

t∗
a′L

by affine base change [SP, Tag 02KG] along the square (1.2.5).

(6)In fact, given the other conditions, flatness is automatic.
(7)The degree deg(f) is equal to the degree of the field extension f∗ : K(B) ↪→ K(A), while the
separable degree of this extension is equal to the order of ker(f), cf. [MumAV, §6, App. 3].
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1.2.15. — Let L ∈ Pic(A) be a line bundle. Then one obtains as a corollary of the
Theorem of the Cube, that

[n]∗L ≃ L⊗n(n+1)/2 ⊗ [−1]∗L⊗n(n−1)/2, (1.2.6)

cf. [EGM, Cor. 2.12]. If L is symmetric, i.e. [−1]∗L ≃ L, then (1.2.6) becomes
[n]∗L ≃ L⊗n2 , and if L is anti-symmetric, i.e. [−1]∗L ≃ L∨, then (1.2.6) becomes
[n]∗L ≃ L⊗n. Considering the tensor decomposition of L⊗2 into the symmetric line
bundle L⊗ [−1]∗L and the anti-symmetric line bundle L⊗ [−1]∗L∨, the latter being
algebraically equivalent to OA by [EGM, Cor. 7.23], we calculate in the Néron–Severi
group NS(A) that

2[n]∗[L] = [n]∗[L⊗2] = [n]∗[L⊗ [−1]∗L] = n2[L⊗ [−1]∗L] = 2n2[L] ∈ NS(A).

So, since NS(A) is torsion free (cf. [EGM, Cor. 7.25]), and after base change to k every
class in NS(Ak) is represented by a line bundle L ∈ Pic(Ak), we see that pullback
along [n] acts on Néron–Severi groups as in the diagram

0 Pic0(A) Pic(A) NS(A) 0

0 Pic0(A) Pic(A) NS(A) 0.

·n [n]∗ ·n2

1.2.16. Definition (Exponents of isogenies). — The exponent e(f) of an isogeny
f : A→ B is defined as the smallest positive natural number e such that ker(f) ⊂ A[e].
It is clear that the exponent divides the degree, e(f) | deg(f), since ker(f) ⊂ A[deg(f)],
cf. [EGM, Exer. 4.4].

1.2.17. Definition (Polarizations). — A homomorphism λ : A→ A∨ is called a
polarization if λ is

(i) an isogeny, i.e. surjective with finite kernel,
(ii) symmetric, i.e. λ = λ∨ ◦ ev, and
(iii) the pullback (id, λ)∗P of the Poincaré bundle along the morphism (id, λ) : A→

A×A∨ is ample.
We call A principally polarizable if it admits a polarization λ of degree deg(λ) = 1, i.e.
if λ is an isomorphism A ∼−→ A∨; in this case λ is called a principal polarization.

1.2.18. Remark. — A polarization λ : A → A∨ is of the form λ = φL for some
ample line bundle L ∈ Pic(A) after base-change to some finite field extension of k, cf.
[EGM, Cor. 11.5]. By Riemann–Roch, cf. [EGM, Thm. 9.11], we have

deg(φL) = χ(L)2 and χ(L) = c1(L)g/g!,

so the degree of the polarized variety (A,L) equals g!
√

deg(λ). For the case g = 2,
which will interest us the most, we thus have for some d ∈ N that

deg(λ) = d2 and deg(A,L) = 2d.

1.2.19. Example. — Let C be a smooth, proper curve, then its Jacobian Jac(C)
is principally polarized, where the isomorphism λ : Jac(C) ∼−→ Jac(C)∨ is induced by
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the line bundle OC(Θ), where Θ is a so called “theta divisor” on Jac(C), cf. [EGM,
Thm. 14.23].

Following [EGM, 11.24], to see that there exist non-principally polarizable abelian
varieties, one starts with a principally polarized abelian variety A over k of dimen-
sion g ≥ 2 with End(A) = Z. The Jacobians Jac(C) associated to certain hyperelliptic
curves C provide such abelian varieties in characteristic zero, cf. [Mor77], and in
positive characteristic under further restrictions, in particular k ̸= Fp, cf. [Zar18,
Thm. 1.1]. Suppose λ : A → A∨ is a principal polarization. Any other morphism
A→ A∨ is of the form nλ, for some n ∈ Z, and has degree n2g, cf. Proposition 1.2.25
and Example 1.2.13. Let ℓ ≠ char(k) be a prime number and let G ⊂ A be a subgroup
scheme of order ℓ, as may be found inside A[ℓ] ≃ (Z/ℓZ)2g. Now consider the quotient

q : A→ A/G,

and let µ : A/G→ (A/G)∨ be any polarization. Then the homomorphism

q∨ ◦ µ ◦ q : A→ A/G→ (A/G)∨ → A∨

has degree ℓ2 · deg(µ), which is not of the required form n2g if deg(µ) = 1.

1.2.20. — Let λ : A→ A∨ be a polarization of an abelian variety over an algebraically
closed field k = k, and assume that λ is a separable polarization, i.e. char(k) ∤ deg(λ).
Following [Mum66, §1], one can endow the kernel ker(λ) with a (multiplicatively
written) non-degenerate alternating form, which implies that the elementary divisors
of the finite group ker(λ) appear in pairs. So we can write

ker(λ) ≃ (Z/d1Z⊕ · · · ⊕ Z/dgZ)2,

where di ≥ 1 such that di | di+1. Then one calls (d1, . . . , dg) the type of the po-
larization λ. Note that we have indeed no more than 2g elementary divisors, since
ker(λ) ⊂ A[deg(λ)] ≃ (Z/ deg(λ)Z)2g. Thus a polarization λ of type (d1, . . . , dg) has
degree and exponent

deg(λ) = (
g∏
i=1

di)2 and e(λ) = dg.

The type of a polarization λ : A→ A∨ over k is defined as the type of the polarization λk
arising by base change to k.

1.2.21. Dual isogenies and dual polarizations. — Let f : A→ B be an isogeny
of degree d = deg(f). Then there exists a unique isogeny f̂ : B → A, called the dual
isogeny, satisfying f ◦ f̂ = [d] and f̂ ◦ f = [d], which is constructed as follows. Since
ker(f) ⊂ A[d], cf. [EGM, Exer. 4.4], we can factor the homomorphism [d] : A → A

over the homomorphism f , diagramatically

ker(f) A A

B.
0

f

[d]

f̂
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Now let λ : A → A∨ be an isogeny of exponent e(λ). By the same argument as
above, there exists and isogeny λD : A∨ → A satisfying

λ ◦ λD = [e(λ)] and λD ◦ λ = [e(λ)].

Following [BL03, §2], if λ : A → A∨ is a separable polarization of type (d1, . . . , dg),
then the dual polarization is defined as

λδ := d1λ
D,

and satisfies (λδ)δ = λ, cf. [BL03, Prop. 2.3].

1.2.22. Remark. — As a warning, the dual polarization λδ : A∨ → A (or λD)
should neither be confused with the dual isogeny λ̂ : A∨ → A, nor with the dual
homomorphism λ∨ : A∨∨ → A∨.

1.2.23. Theorem. — Let λ : A→ A∨ be a separable polarization of type (d1, . . . , dg).
Then λD : A∨ → A ≃ A∨∨ is a separable polarization of type

type(λD) =
(

1, dg
dg−1

, . . . ,
dg
d1

)
.

In particular λδ : A∨ → A ≃ A∨∨ is a separable polarization as well, and its type is

type(λδ) =
(
d1,

d1dg
dg−1

, . . . ,
d1dg
d2

, dg

)
.

Proof. — This is exactly [BL03, Thm. 2.1] and [BL03, Prop. 2.2]. We reproduce the
details here. Without loss of generality, we base change to an algebraic closure k. We
already know that λD is an isogeny. We show that λD is symmetric, i.e. (λD)∨ = ev ◦λD.
Dualizing the equation λ ◦ λD = [e] yields (λD)∨ ◦ λ∨ = [e]. We know λ is symmetric,
i.e. λ = λ∨ ◦ ev, so by substituting we obtain (λD)∨ ◦ λ = [e] ◦ ev. On the other hand,
from λD ◦ λ = [e] we get

ev ◦λD ◦ λ = ev ◦[e] = [e] ◦ ev .

Comparing these equations and cancelling λ, since it is surjective, yields (λD)∨ =
ev ◦λD as desired.

By symmetry, we know that we can write λD = φM for some line bundle M ∈
Pic(A∨), and we need to check that M is ample. We have the chain of equalities

φλ∗M = λ∨ ◦ φM ◦ λ = λ∨ ◦ λD ◦ λ = λ∨ ◦ ev ◦λD ◦ λ = λ ◦ [e],

where we used (1.2.2), the implicit evaluation morphism in λD, the symmetry of λ,
and the property λD ◦ λ = [e]. Since λ is a polarization, λ ◦ [e] = eλ is a polarization
as well, which implies that λ∗M is ample. Since λ is a finite surjective morphism of
proper schemes, this implies that M is already ample, cf. [HarAS, Prop. I.4.4].

Since λ is separable, we know that char(k) is not a divisor of e(λ), so λ◦λD = [e(λ)]
implies that λD is separable as well.
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Regarding the type of λD, by the construction of λD in ¶1.2.21 and the definition
of the type of a polarization, we have

ker(λD) ≃ ker([e])/ ker(λ)

≃ (Z/dgZ)2g/(Z/d1Z⊕ · · · ⊕ Z/dgZ)2

≃ (Z/dg

d1
Z⊕ · · · ⊕ Z/ dg

dg−1
Z)2.

1.2.24. Simple abelian varieties. — An abelian variety A is simple if it is non-zero
and its only abelian subvarieties are 0 and A itself. An abelian variety A is simple if
and only if End(A)⊗Z Q is a division algebra, cf. [MumAV, §19, Cor. 2]; in particular,
if End(A) = Z, then A is simple.

1.2.25. Proposition. —
(i) There exist (non-canonical) injections of groups Hom(A,A∨) ↪→ End(A) and

End(A) ↪→ Hom(A,A∨).
(ii) We have an isomorphism of algebras End(A) ≃ End(A∨)op. So if End(A) = Z,

then End(A∨) = Z, and Hom(A,A∨) ≃ Z, and NS(A) ≃ Z.

Proof. — (i) There exist isogenies λ : A → A∨ and λ′ : A∨ → A, e.g. a polarization
and its dual isogeny. Consider the group homomorphism

ψ : Hom(A,A∨)→ End(A), f 7→ λ′ ◦ f.

If ψ(f) = 0, then im(f) ⊂ ker(λ′). Since A is connected and ker(λ′) is finite,
we see that f is constant, with value 0 since f(0) = 0. Similarly, we see that
End(A)→ Hom(A,A∨), f 7→ λ ◦ f is injective.

(ii) Consider the group homomorphism

δA : End(A)→ End(A∨), f 7→ f∨.

The composition δA∨ ◦ δA is the identity when we identify A with A∨∨ using the
isomorphism ev: A→ A∨∨. Indeed, for every f ∈ End(A), we have f = ev−1 ◦f∨∨◦ev,
as is readily checked using the functor of points of the dual abelian variety, cf. [EGM,
§6.2, Def. 6.19]. So we conclude End(A) ≃ End(A∨).

Finally, by (i), Hom(A,A∨) is a subgroup of End(A) = Z, so it is isomorphic to Z
itself. Similarly, NS(A) identifies with the subgroup of symmetric homomorphisms in
Hom(A,A∨), so also NS(A) ≃ Z.

To exercise the definitions further we prove the following elementary statement.

1.2.26. Proposition. — If Hom(A,A∨) = Z · λ0, then λ0 or −λ0 is a polarization.

Proof. — We know that there exists some polarization λ : A→ A∨. By assumption
we can write λ = n · λ0 for some n ∈ Z. Let us assume that n ≥ 1, otherwise replace
λ0 by −λ0. First, we check that λ0 is an isogeny. Since λ is surjective, we find that
λ0 ◦ [n] = λ is surjective as well, which in turn shows that λ0 is surjective.

Second, we check that λ0 is symmetric. We know by assumption that [n] ◦λ0 = λ is
symmetric, i.e. [n]◦λ0 = ([n]◦λ0)∨ ◦ ev. Substituting ([n]◦λ0)∨ = λ∨

0 ◦ [n]∨ = λ∨
0 ◦ [n],
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we see that λ0 ◦ [n] = λ∨
0 ◦ ev ◦[n]. Since [n] is surjective, this implies λ0 = λ∨

0 ◦ ev as
desired.

Third, we check that (id, λ0)∗P is an ample line bundle on A. We have

(id, λ)∗P = (id, nλ0)∗P = (id, λ0)∗(id×[n])∗P ≃ (id, λ0)∗(P⊗n) ≃ ((id, λ0)∗P)⊗n,

by [EGM, Lem. 7.16] using P|{0}×A∨ ≃ OA∨ . Finally (id, λ0)∗P is ample since some
positive power of it is ample by assumption.

1.2.27. Proposition. — Assume g = 2 and Hom(A,A∨) = Z ·λ0 for some separable
polarization λ0, then

(i) Hom(A∨, A) = Z · λδ0, where λδ0 denotes the dual polarization of λ0, and
(ii) λδ0 ◦ λ0 = [e(λ0)], as well as λ0 ◦ λδ0 = [e(λ0)], with e(λ0)2 = deg(λ0).

Proof. — (i) In order to keep the formulas a bit more transparent, we consider g to
be arbitrary in the first part of this argument. Let (d1, . . . , dg) be the type of the
polarization λ0, then by Theorem 1.2.23 the type of λD

0 is

(1, dg/dg−1, . . . , dg/d1),

and the type of (λD
0 )D is

(1, d2/d1, . . . , dg/d1).
This allows us to compute the degrees

deg(λ0) = d2
1 . . . d

2
g,

deg(λD
0 ) = (dg . . . dg)2/(dg . . . d1)2 = d2g

g / deg(λ0),

deg((λD
0 )D) = (d1 . . . dg)2/(d1 . . . d1)2 = deg(λ0)/d2g

1 .

Now, Hom(A,A∨) = Z · λ0 implies that deg(λ0) divides deg((λD0 )D) = deg(λ0)/d2g
1 ,

which shows that d1 = 1. Using g = 2, we see that

deg(λD
0 ) = d4

2/d
2
2 = deg(λ0).

Writing Hom(A∨, A) = Z · λ̃, and applying the above arguments to λ̃, yields the
equality deg(λ̃D) = deg(λ̃). So deg(λ̃) ≥ deg(λD

0 ), otherwise deg(λ̃) < deg(λD
0 ) would

imply deg(λ̃D) < deg(λ0), contradicting the minimality of deg(λ0). In conclusion,
since λD

0 is already a multiple of λ̃, we get λ̃ = λD
0 .

(ii) Note that the arguments above show that λδ0 = λD
0 and e(λ0)2 = d2

2 = deg(λ0).
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1.3. Semi-homogeneous and unipotent vector bundles

We briefly exposit Mukai’s theory of semi-homogeneous vector bundles on abelian
varieties and state a few facts concerning them that will be useful later on in §6.2.
See [Muk78] for reference and details. Everything, except the splitting criterion in
Proposition 1.3.12, can be found in the works of Mukai.

1.3.1. Situation. — Let A be an abelian variety of dimension dim(A) = g over an
algebraically closed field k = k.

1.3.2. Definition (Semi-homogeneous vector bundle). — A vector bundle E

on A is called semi-homogeneous if for every a ∈ A there exists some line bundle
La ∈ Pic0(A) such that

t∗
aE ≃ E⊗ La.

If each La is the trivial line bundle OA, then one says E is homogeneous. The vector
bundle E is called simple if End(E) = k.

1.3.3. Example. — Every line bundle L ∈ Pic(A) is semi-homogeneous, indeed

t∗
aL ≃ L⊗ PφL(a),

and L is homogeneous if and only if L ∈ Pic0(A), i.e. L is algebraically trivial.
If E is semi-homogeneous, then the vector bundle End(E) is homogeneous.
Let f : A′ → A be an isogeny and L′ ∈ Pic(A′) a line bundle on A′, then f∗L

′ is
a semi-homogeneous vector bundle on A, cf. [Muk78, Prop. 5.4]. Conversely, every
simple semi-homogeneous vector bundle E on A is of the above form f∗L

′, cf. [Muk78,
Thm. 5.8]. But this construction does not alway lead to interesting bundles, for
example if char(k) ∤ n, then

[n]∗OA ≃
⊕

α∈A∨[n]

Pα,

and, by the projection formula, we have a similar decomposition for the push forward
of a line bundle of the form [n]∗L, cf. [Muk78, Cor. 4.22].

1.3.4. Definition. —
(i) Let E ̸= 0 be a vector bundle on A. Define the slope µ(E) of E as

µ(E) := [det(E)]⊗ 1
rk(E) ∈ NS(A)⊗Q.

(ii) Given an element µ = [L]⊗ 1
ℓ ∈ NS(A)⊗Q (with ℓ ∈ Z), one defines

Φµ := im(([ℓ], φL) : A→ A×A∨).

Denote the projection onto the first factor by pr1 : Φµ ↪→ A × A∨ → A, and
denote its kernel by

Σµ := ker(pr1 : Φµ → A).

1.3.5. Remark. — Note that the image in the definition of Φµ depends only on µ

instead of L and ℓ, essentially due to the fact that the maps [n] : A→ A are surjective.
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1.3.6. — If E is a simple semi-homogeneous vector bundle of slope µ, then (a, α) ∈ Φµ
if and only if t∗

aE ≃ E⊗Pα, where P ∈ Pic(A×A∨) is the Poincaré bundle, cf. [Muk78,
Prop. 7.7], [Orl02, Lem. 4.9].

We can view Σµ ⊂ A × A∨ as a subgroup of the second factor A∨. Then the
description of Φµ above means that

Σµ = {α ∈ A∨ | E ≃ E⊗ Pα}.

On the other hand, writing µ = [L]⊗ 1
ℓ , the definition of Φµ tells us that we have an

equality
Σµ = {φL(a) | a ∈ A, ℓa = 0}.

Thus we have a short exact sequence

0→ ker(φL)[ℓ]→ A[ℓ] φL−−→ Σµ → 0,

and we see that Σµ ⊂ A∨[ℓ], cf. [Muk78, Cor. 7.8].

The next proposition is concerned with the construction of (simple) semi-
homogeneous vector bundles of a given slope.

1.3.7. Proposition. — Let µ = [L]⊗ 1
ℓ ∈ NS(A)⊗Q with ℓ > 0.

(i) The sheaf F := [ℓ]∗(L⊗ℓ) is a semi-homogeneous vector bundle on A with
slope µ(F) = µ.

(ii) Let F be a semi-homogeneous vector bundle on A of slope µ(F) = µ, then there
exists a Jordan–Hölder filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fk = F

such that each Ei = Fi/Fi−1 is a simple semi-homogeneous vector bundle of
slope µ(Ei) = µ. Such a filtration is not necessarily unique but the associated
multiset {{Ei}} of grades pieces is unique.

Proof. — See [Muk78, Prop. 6.22, Prop. 6.15]. We spell out the details for (i) in
the case of characteristic char(k) = 0, following Mukai. First, in greater generality,
let f : A′ → A be an isogeny and let E be a semi-homogeneous vector bundle on A′.
Since an isogeny is finite locally free(8), we see that f∗E is again a vector bundle, of
rank rk(f∗E) = deg(f) rk(E).

Second, let a ∈ A and pick a′ ∈ A′ such that f(a′) = a. Then there exist some
line bundle L′

a′ ∈ Pic0(A′) such that t∗
a′E ≃ E⊗ L′

a′ . Since f is an isogeny, we know
that f∗ : Pic0(A) → Pic0(A′) is surjective, cf. ¶1.2.10, so we can pick a line bundle
La ∈ Pic0(A) with f∗La ≃ L′

a′ . By base change and the projection formula, we
calculate

t∗
af∗E ≃ f∗t∗

a′E ≃ f∗(E⊗ L′
a′) ≃ f∗(E⊗ f∗La) ≃ f∗E⊗ La.

(8)A morphism f : X → Y is finite locally free if it is finite, flat, and locally of finite presentation.
This is equivalent to being affine and f∗OX is a finite locally free OY -module, cf. [SP, Tag 02K9].
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Third, we calculate

f∗(det(f∗E)) ≃ det(f∗f∗E) ≃ det(
⊕

a′∈ker(f)

t∗
a′E)

≃
⊗

a′∈ker(f)

det(E⊗ L′
a′) ≡ det(E)⊗ deg(f),

where the last congruence “≡” is modulo Pic0(A′), i.e. “≡” can be viewed as equality
inside NS(A′).

Now specializing to f = [ℓ], and E = L⊗ℓ, and F = [ℓ]∗L⊗ℓ, we get the equalities

[ℓ]∗[det(F)] ≡ [(L⊗ℓ)⊗ℓ2g

] ≡ ℓ2g+1[L] ∈ NS(A).

We also have [ℓ]∗[det(F)] ≡ ℓ2[det(F)] by ¶1.2.15, so [det(F)] ≡ ℓ2g−1[L]. Finally,

µ(F) def= [det(F)]
rk(F) ≡

ℓ2g−1[L]
ℓ2g ≡ [L]

ℓ
.

1.3.8. Proposition. — Fix some µ ∈ NS(A)⊗Q.
(i) There exists a simple semi-homogeneous vector bundle E on A of slope µ.
(ii) Every other such simple semi-homogeneous vector bundle E′ of slope µ is of the

form E′ ≃ E⊗M for some line bundle M ∈ Pic0(A).
(iii) The rank of E can be computed using rk(E)2 = deg(pr1|Φµ

). Also χ(E)2 =
deg(pr2|Φµ

), if χ(E) ̸= 0.(9)

Proof. — See [Muk78, Thm. 7.11]. Part (i) uses the constructions recalled in Proposi-
tion 1.3.7.

1.3.9. Remark. — By ¶1.3.6 and Proposition 1.3.8.(iii), the fact that #A[ℓ] ≤ ℓ2g

implies that the rank of a simple semi-homogeneous vector bundle E of slope µ = [L]⊗ 1
ℓ

satisfies the bound rk(E) ≤ ℓg. On the other hand deg([ℓ]) = ℓ2g, so [ℓ]∗L⊗ℓ has
rank ℓ2g and is not simple.

1.3.10. — Let E1 and E2 be two simple semi-homogeneous vector bundles of the
same slope µ(E1) = µ(E2). Then by [Muk78, Prop. 6.17] and [Orl02, Lem. 4.8] we
have either E1 ≃ E2 or

Ext•(E1,E2) = 0 and Ext•(E2,E1) = 0.

In the case E1 ≃ E2 =: E, we have for j = 1, . . . , g

dim Extj(E,E) =
(
g

j

)
by [Muk78, Thm. 5.8] and the local to global Ext spectral sequence.

(9)By ¶1.3.6, Σµ = ker(pr1 : Φµ → A) is finite, so pr1|Φµ is indeed an isogeny. Note that pr2|Φµ

is an isogeny if and only if φdet(E) : A → A∨ is an isogeny. But [Muk78, Prop. 6.12] says that
χ(det(E)) = rk(E)g−1χ(E) ̸= 0, which implies that φdet(E) is an isogeny by the Riemann–Roch
theorem, cf. [EGM, Thm. 9.11].
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1.3.11. Definition (Unipotent vector bundles). — A vector bundle U on a
variety X is called unipotent if it admits an increasing filtration 0 = U0 ⊂ U1 ⊂ · · · ⊂
Ur = U such that Ui/Ui−1 ≃ OX for every i = 1, . . . , r.

A particular class of homogeneous vector bundles on abelian varieties are the
unipotent vector bundles, and conversely every homogeneous vector bundle E on A is
the direct sum of unipotent vector bundles twisted by algebraically trivial line bundles,
cf. [Muk78, Thm. 4.17], that is, E ≃

⊕
i Ui ⊗Li for some unipotent vector bundles Ui

on A and line bundles Li ∈ Pic0(A).

1.3.12. Proposition. — Let U be a unipotent vector bundle on a variety X with
H0(X,OX) = k, and set r = rk(U), then

(i) dim End(U) ≤ r2, and
(ii) dim End(U) = r2 if and only if U is split, i.e. U ≃ O⊕r

X .

Proof. — We use induction on the rank r. First note that indeed rk(Ui) = i, so in
the base case i = 1 we just have U = U1 ≃ OX . Now consider the induction step and
abbreviate U′ := Ur−1 and U := Ur, as well as O := OX . Then we have a short exact
sequence 0→ U′ → U→ O→ 0 and applying long exact Ext sequences, we obtain the
following diagram with exact rows and columns:

Ext1(O,U′) Ext1(O,U) Ext1(O,O)

0 Hom(U′,U′) Hom(U′,U) Hom(U′,O) Ext1(U′,U′)

0 Hom(U,U′) Hom(U,U) Hom(U,O) Ext1(U,U′)

0 Hom(O,U′) Hom(O,U) Hom(O,O) Ext1(O,U′)

0 0 0

δ

By assumption we have Hom(O,O) = k, so the third column tells us that
dim Hom(U,O) ≤ dim Hom(U′,O) + 1, and inductively we get dim Hom(Ui,O) ≤ i.

Looking at the bottom row, we similarly get

dim Hom(O,Ui) ≤ i,

and note that equality holds if and only if the unipotent filtration splits (in every
induction step) since the connecting map δ must be zero in this case. Then the third
row and first column, respectively, imply that

dim Hom(U,U) ≤ dim Hom(U,U′) + r

dim Hom(U,U′) ≤ dim Hom(U′,U′) + (r − 1).
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Combining all these inequalities yields

dim Hom(U,U) ≤ dim Hom(U′,U′) + 2r − 1 ≤ (r − 1)2 + 2r − 1 = r2.

Finally dim End(U) = r2 forces all these inequalities above to become equalities, which
implies that U is split, as remarked before.

1.3.13. — Fix a vector bundle E. Generalizing the notion of unipotent vector bundles,
a vector bundle F on A is called E-potent if F admits a filtration 0 = F0 ⊂ F1 ⊂ · · · ⊂
Fr = F such that Fi/Fi−1 ≃ E. Denote the category of E-potent vector bundles on A

by BunE−potent(A) and the category of unipotent vector bundles on A by Bununip(A).
We have a natural functor

Bununip(A)→ BunE−potent(A) U 7→ U⊗ E,

which is an equivalence of categories by [Muk78, Prop. 6.2] if E is a simple semi-
homogeneous vector bundle and char(k) ∤ rk(E). In particular, under these latter
assumptions, for two unipotent vector bundles U1, U2 we have

U1 ⊗ E ≃ U2 ⊗ E if and only if U1 ≃ U2.

1.3.14. — Let F be a semi-homogeneous vector bundle of slope µ(F) = µ. By
Proposition 1.3.7 there exists a Jordan–Hölder filtration F• ⊂ F, whose graded pieces
Ei = Fi/Fi−1 are simple semi-homogeneous vector bundles of slope µ(Ei) = µ. Using
the Ext-orthongonality from ¶1.3.10 for the bundles Ei, i.e. either

Ei ≃ Ei′ or Ext•(Ei,Ei′) = 0,

we can rearrange the filtration F• into the form

F ≃
⊕
j∈J

Uj ⊗ Ej ,

where the Uj are unipotent vector bundles and J is a subset of the indices i of
the filtration F• such that the vector bundles Ej are pairwise distinct, cf. [Muk78,
Prop. 6.18].

1.3.15. Remark. — As a teaser for the study of derived equivalences later on, let
us discuss the interaction of Mukai’s original Fourier–Mukai transform with unipotent
and homogeneous bundles. Following [Muk78, §4], consider the functor

Φ : Db(A∨)→ Db(A) F → RprA,∗(pr∗
A∨(F)⊗ P),

between bounded derived categories of coherent sheaves (see §2.1 for a recollection),
where P ∈ Pic(A×A∨) is the Poincaré bundle and prA and prA∨ denote the projections
onto the respective factors. By [Muk81, Thm. 2.2], this functor is an equivalence of
categories. Since t∗

(a,0)P ≃ P⊗ Pa, we have by [Muk78, Lem. 4.3]

t∗
aΦ(F) ≃ Φ(F ⊗ Pa). (1.3.1)

Denote by Coh{0}(A∨) the category of coherent sheaves supported at the origin, by
Cohfin(A∨) the category of coherent sheaves supported at finitely many points, and by
Bunhomog(A) the category of homogeneous vector bundles. Then [Muk78, Lem. 4.8]
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tells us, using (1.3.1), that Φ restricts to functors

Φ : Coh{0}(A∨)→ Bununip(A),
Φ : Cohfin(A∨)→ Bunhomog(A),

which are equivalences by [Muk78, Thm. 4.12, Thm. 4.19], and satisfy rk(Φ(F)) =
length(F).

Taking the discussion one step further, by taking formal completions at the origin,
we have an equivalence Coh{0}(A∨) ≃ Coh{0}(Spf(kJx1, . . . , xgK)), and the latter can
be described as the category of finite-dimensional k-vector spaces V together with g

commuting nilpotent endomorphism ψi : V → V . This gives also an explanation of
Proposition 1.3.12 using linear algebra, since a nilpotent endomorphism of V which
commutes with every endomorphism in End(V ) must be trivial.





CHAPTER 2

Fourier–Mukai equivalences

2.1. Derived categories and their (auto)equivalences

See the textbook [HuyFM] for a general introduction to derived categories of
coherent sheaves and Fourier–Mukai functors. This section is completely expository.

2.1.1. Derived categories of coherent sheaves. — Let X be a variety over a
field k, then the category Coh(X) of coherent sheaves on X is a k-linear abelian
category. Consider the category Kom(Coh(X)) of complexes of coherent sheaves and
the class of so called quasi-isomorphisms, consisting of morphisms f : F• → G• which
become an isomorphism after taking cohomology of complexes. Localizing at the class
of quasi-isomorphisms, i.e. essentially adjoining inverses of quasi-isomorphisms, gives
rise to the derived category

Q : Kom(Coh(X))→ D(Coh(X)),

which can be constructed such that Q is the identity on objects, cf. [HuyFM, Thm. 2.10,
Cor. 2.11]. Similarly, by considering bounded complexes, we obtain the bounded derived
category of coherent sheaves

Db(X) := Db(Coh(X)).

The (bounded) derived category is still a k-linear category which becomes a trian-
gulated category by considering the autoequivalence

[1] : Db(X)→ Db(X)

which shifts the indices of a complex by +1, and declaring the mapping cone sequences

F• f−→ G• → cone(f)→ F•[1]

as the distinguished triangles, cf. [HuyFM, Prop. 2.24].
With a view towards derived functors, recall that a k-linear functor Φ : T → T ′

between triangulated categories is exact if it commutes with the respective shift
functors, i.e. Φ ◦ [1] ≃ [1] ◦ Φ, and maps distinguished triangles in T to distinguished
triangles in T ′.
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2.1.2. — Since the category of coherent sheaves almost never has enough injective
objects, one needs to consider for the construction of derived functors the category
QCoh(X) of quasi-coherent sheaves on X, which has enough injective objects. On
the level of derived categories, the natural functor Db(Coh(X)) → Db(QCoh(X))
provides an equivalence

Db(X) ∼−→ Db
coh(QCoh(X)) (2.1.1)

onto the full subcategory of complexes of quasi-coherent sheaves which have coherent
cohomology sheaves, cf. [HuyFM, Prop. 3.5].

Let f : X → Y be a morphism of varieties, then the direct image functor
f∗ : QCoh(X)→ QCoh(Y ) is left exact. By considering an injective resolution of a
given complex and applying f∗ to such a resolution component-wise, we obtain the
derived functor

Rf∗ : Db(QCoh(X))→ Db(QCoh(Y )), (2.1.2)
which is well-defined, k-linear, and exact, cf. [HuyFM, Prop. 2.47, Thm. 3.22]. If the
morphism f is proper, then the higher direct image sheaves Hi(Rf∗F) of a coherent
sheaf F ∈ Coh(X) are itself coherent and Hi(Rf∗F) = 0 for |i| ≫ 0, cf. [HuyFM,
Thm. 3.23], so using (2.1.1) we can restrict (2.1.2) to a functor

Rf∗ : Db(X)→ Db(Y ).

Let F ∈ Coh(X) be a coherent sheaf. Then the tensor product functor

F ⊗ (−) : Coh(X)→ Coh(X)

is right exact, and restricted to the subcategory of locally free sheaves, it is exact.
When X is projective, the category of coherent sheaves on X has enough locally free
sheaves, cf. [HuyFM, Prop. 3.18]. Assume that X is smooth, then any coherent sheaf
F ∈ Coh(X) admits a resolution by locally free sheaves which is of finite length
(bounded by the dimension of X, in fact), cf. [HuyFM, Prop. 3.26]. So tensoring with
a locally free resolution yields the left derived exact functor

F L⊗ (−) : Db(X)→ Db(X).

Following [HuyFM, pp. 79–80], this generalizes to the case where F ∈ Db(X) is a
complex of coherent sheaves and leads to the bifunctor

(−) L⊗ (−) : Db(X)×Db(X)→ Db(X).

Let f : X → Y be a morphism of smooth varieties. One essentially defines the
derived pullback

Lf∗ : Db(Y )→ Db(X)
as the composition of the exact inverse image functor with the derived tensor product,
cf. [HuyFM, p. 81].

2.1.3. Remark. — The functors discussed in ¶2.1.2 satisfy the expected compatibil-
ities. For example, in telegraphic style:
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– Rf∗ ◦Rg∗ = R(f ◦ g)∗
– Lf∗ ◦ Lg∗ = L(g ◦ f)∗

– Rf∗F
L⊗ G ≃ Rf∗(F L⊗ Lf∗G)

(projection formula)

– (F L⊗ G) L⊗H ≃ F L⊗ (G L⊗H)
– F L⊗ G ≃ G L⊗ F

– Lf∗(F L⊗ G) ≃ Lf∗F L⊗ Lf∗G

– etc.

2.1.4. Situation. — Let X and Y be smooth, projective varieties over a field k.
The product X × Y denotes the product in the category of varieties over k, i.e. the
fiber product X ×k Y .

2.1.5. Definition (Derived equivalences). —
(i) A functor Φ : Db(X) → Db(Y ) is a derived equivalence if it is k-linear, an

equivalence of categories, and exact in the sense of triangulated categories.
(ii) The Fourier-Mukai functor FMP : Db(X) → Db(Y ) associated to a kernel

P ∈ Db(X × Y ) is defined as

FMP(−) := RprY,∗(Lpr∗
X(−) L⊗ P),

where prX : X×Y → X and prY : X×Y → Y denote the coordinate projections.
We say that X and Y are derived equivalent, or Fourier–Mukai partners, if there exists
some derived equivalence between Db(X) and Db(Y ).

2.1.6. Notation. — Denote by Aut(Db(X)) the group of isomorphism classes of
derived autoequivalences of X, and denote by Eq(Db(X),Db(Y )) the Aut(Db(X))-
torsor of isomorphism classes of derived equivalences between X and Y .

2.1.7. Remark. — We do not need to derive the pullback functor pr∗
X in Defini-

tion 2.1.5, since the projection prX is flat. Similarly, if P is a complex of flat coherent
sheaves on X × Y , e.g. P is a locally free sheaf, then the derived tensor product in
Definition 2.1.5 becomes a usual tensor product.

2.1.8. Composition and convolution. — Of course one can consider the com-
position Φ′ ◦ Φ of two functors Φ : Db(X)→ Db(Y ) and Φ′ : Db(Y )→ Db(X). Now
assume that Φ and Φ′ are Fourier–Mukai functors with kernel P ∈ Db(X × Y ) and
Q ∈ Db(Y × Z), respectively, and define the convolution product of Q and P as

Q ⋆ P := RprXZ,∗(Lpr∗
XY P

L⊗ Lpr∗
Y ZQ),

where prXZ , prXY and prY Z are the projections from the product X × Y × Z that
are suggested by their name. Then Mukai explained, cf. [HuyFM, Prop. 5.10], that
composition of functors corresponds to convolution of kernels, i.e.

FMQ ◦FMP ≃ FMQ⋆P .

Note that the convolution product is functorial in both entries.

2.1.9. Example. — The variety X admits the following standard autoequivalences.
(i) The shift functor [n] : Db(X)→ Db(X) which shifts the indices of a complex

by n is an autoequivalence for every n ∈ Z.
(ii) Let L ∈ Pic(X) be a line bundle, then twisting complexes by L gives an

autoequivalence −⊗ L ∈ Aut(Db(X)).
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(iii) Let f ∈ Autk(X) be an automorphism of the variety X/k, then push-forward
along f provides an autoequivalence f∗ ∈ Aut(Db(X)). Equivalently, pullback
along f provides an autoequivalence, but we have the identity of functors

f∗ = (f−1)∗ : QCoh(X)→ QCoh(X), (2.1.3)

as can be verified directly or by an application of affine base change, cf. [SP,
Tag 02KG].

Note that the described functors, on the level of coherent sheaves, are exact, so one
does not need to derive them in order to view them as functors between derived
categories. Letting Autk(X) act on Pic(X) via f.L := f∗L, we have in conclusion the
homomorphism

Z×Autk(X) ⋉ Pic(X) ↪→ Aut(Db(X))
(n, f,L) 7→ L[n]⊗ f∗(−),

(2.1.4)

which is seen to be injective, if X is geometrically reduced, by considering the trivial
sheaf OX as well as skyscraper sheaves k(x) for closed points x ∈ X.

2.1.10. Theorem (Orlov). — Let X and Y be smooth, projective varieties over a
field k, and let Φ : Db(X)→ Db(Y ) be an exact k-linear fully faithful functor. Then
there exists a kernel P ∈ Db(X ×k Y ) and a natural isomorphism

Φ ≃ FMP : Db(X)→ Db(Y ).

Furthermore, the kernel P is unique up to isomorphism.

Proof. — See [Orl97, Thm. 2.2]. The additional assumptions about the existence of
adjoints in loc. cit. are taken care of using [BB03]. See [Bal09; Bal11] for generalizations
to the non-smooth case.

2.1.11. Example. — Let us describe the Fourier–Mukai kernels of the equivalences
in Example 2.1.9; see [HuyFM, Ex. 5.4] for details.

(i) Let f : X → Y be a morphism of varieties, and denote by ı : Γf ↛↪→ X × Y the
graph of f . Then the push-forward functor is described as a Fourier–Mukai
functor as

Rf∗ ≃ FMOΓf
: Db(X)→ Db(Y ).

(ii) Consider the transpose Γt
f ↛↪→ Y ×X of the graph of f , which is ı composed

with the isomorphism swapping the factors of the product X × Y . Then the
pullback functor is described as

Lf∗ ≃ FMOΓt
f

: Db(Y )→ Db(X).

(iii) Let L ∈ Pic(X) and set f = id, so ı : ∆ = Γid ↛↪→ X ×X is the diagonal. Then
the twist functor is described as

−⊗ L ≃ FMı∗L : Db(X)→ Db(X).

(iv) For n ∈ Z we have

[n] = FMO∆[n] : Db(X)→ Db(X).
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In view of the Poincaré bundle P ∈ Pic(A∨ ×A) for an abelian variety A, cf. ¶1.2.8,
the following example is of interest, cf. [HuyFM, Ex. 5.4.vi].

(v) Let P ∈ Coh(X ×Y ) be flat over X, and let x ∈ X(k) be a rational point, then

FMP(k(x)) ≃ P|{x}×Y .

The following proposition describing the the Fourier–Mukai functor of a pulled-back
kernel will be useful when studying derived autoequivalences of a variety with group
action in §5.2.

2.1.12. Proposition. — Let P ∈ Db(X × Y ), and let g : X ′ → X and h : Y ′ → Y

be morphisms of varieties. Then we have the identity

FML(g,h)∗P ≃ Lh∗ ◦ FMP ◦Rg∗.

Proof. — See [HuyFM, Exer. 5.12]. This is a straight-forward calculation with Fourier–
Mukai kernels; some details are given in [Plo05, Ex. 1.6.(4)].

2.1.13. Proposition. — Let FMP : Db(X) → Db(Y ) be a derived equivalence
with Fourier–Mukai kernel P ∈ Db(X × Y ). Assume that the variety X satisfies
H0(X,OX) = k.(1) Then P is a simple object, i.e.

Hom(P,P) = k.

More generally, convolution with P induces an isomorphism

P⋆ : Ext•(O∆X
,O∆X

) ∼−→ Ext•(P,P),

where the left hand side is called the Hochschild cohomology of X.

Proof. — See for example [Plo05, Lem. 1.12] for a proof. The argument uses that

HomDb(X×X)(O∆X
,O∆X

) ≃ HomCoh(X×X)(O∆X
,O∆X

)
≃ Hom(∆X,∗OX ,∆X,∗OX) ≃ Hom(∆∗

X∆X,∗OX ,OX) ≃ Hom(OX ,OX) ≃ k,

by, among other reasons, adjunction and the fact that ∆∗
X∆X,∗OX ≃ OX , since

∆X : X → X ×X is a closed immersion.
For an argument for the more general claim, see [AT14, §6.1].

2.1.14. — The notion of derived equivalence does not always provide more flexibility
in comparison to the notion of isomorphism. For example, by [BO01, Thm. 2.5,
Thm. 3.1], if X is an (anti-)Fano variety, i.e. X is a connected, smooth, projective
variety with (anti-)ample anticanonical bundle ω∨

X , then for any smooth variety X ′

Db(X) ≃ Db(X ′) implies X ≃ X ′,

and the group of autoequivalences consists of standard autoequivalences

Aut(Db(X)) ≃ Z×Autk(X) ⋉ Pic(X).

(1)For example, assume that X, in addition to being smooth and proper over k, is geometrically
connected, e.g. it is connected with a k-rational point, cf. [LiuAG, Cor. 3.3.21], [SP, Tag 04KV].
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One might use this and the study of derived equivalences of minimal surfaces
in [BM01] as a reason to focus on the class of varieties with (numerically) trivial
canonical bundle. But Enriques surfaces and bielliptic surfaces have still no non-trivial
Fourier–Mukai partners, over an algebraically closed field k with char(k) ̸= 3, 5, cf.
[BM01, Prop. 6.1, Prop. 6.2], [HLT21, Thm 1.1, Thm. 1.2].

The case of K3 surfaces is in general richer, see [HuyK3, Rmk. 2.10] for an overview;
but again, two K3 surfaces S and S′ over k which are derived equivalent must be
isomorphic as soon as the Picard rank of S satisfies ρ(S) > 11, see [Muk87, Prop. 6.2]
in view of [BM01, Thm. 5.1], and [LO15, Thm. 1.1]. In particular, two Kummer K3
surfaces, cf. Example 1.1.6, are derived equivalent if and only if they are isomorphic.
Nevertheless, the group Aut(Db(S)) can still be interesting.
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2.2. Equivariant derived categories and Ploog’s method

The general theory of derived categories of equivariant sheaves is developed in
[BL], where the case of discrete groups is spelled out in Section 8. See [BBH, §1.4]
or [BKR01, §4] for a summary of the construction of Fourier–Mukai functors in the
equivariant setting, and [Blu07, Ch. 3] for some details about equivariant sheaves.

In particular, we state a theorem (Theorem 2.2.13) originally due to Ploog in
mildly greater generality, contribute a technical proposition about the linearization-
obstruction of certain non-simple sheaves, and check explicitly the assumptions required
to apply the derived McKay correspondence to generalized Kummer varieties.

2.2.1. Situation. — Let G, respectively H, be a finite group, acting on an algebraic
variety X, respectively Y , over a field k. We will make further assumptions on the
characteristic of k in Situation 2.2.6 below.

2.2.2. Definition (Equivariant sheaves). — A sheaf F ∈Mod(OX) on X is called
G-invariant if there exist isomorphisms F ≃ g∗F for each g ∈ G. A G-equivariant
structure λ (also called G-linearization) on F is given by isomorphisms

λg : F ∼−→ g∗F

for each g ∈ G, subject to the cocycle condition that λ1 = idF and

F (gh)∗F

h∗F h∗g∗F

λgh

λh ≃
h∗λg

commutes for g, h ∈ G. A G-equivariant sheaf (F, λ) is a sheaf F ∈Mod(OX) together
with a G-equivariant structure λ on F.

2.2.3. Remark. — More generally, let C be a category endowed with a categorical
action of G, cf. [Del97; Sos12]. The notion of equivariant sheaf from Definition 2.2.2
generalizes directly to the notion of equivariant object, and we denote the category
having the latter as objects by

C hG,

where the symbol “h” in the notation is motivated by the concept of homotopy fixed
points.

2.2.4. Example. — Let us describe a couple of equivariant sheaves that are available
in general.

(i) The structure sheaf OX carries a canonical G-equivariant structure coming from
the canonical isomorphsim g∗OX ≃ OX .

(ii) The derivative maps dg : g∗ Ω1
X → Ω1

X for g ∈ G satisfy d(gh) = dg ◦ h∗dg by
their construction, so the inverses

λ
Ω1

X
g := (dg)−1 = g∗d(g−1)

endow the cotangent sheaf Ω1
X with an equivariant structure.
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(iii) Assume that X is smooth, then the canonical sheaf ωX is given by det Ω1
X , and

it inherits an equivariant structure from Ω1
X by taking determinants,

λωX
g := det(λΩ1

X
g ).

(iv) Let χ : G→ k× be a character of the group G, and (F, λ) an equivariant sheaf
on X. Then

λχg := χ(g) · λg
provides another equivariant sheaf (F, λχ). If F is in addition simple, meaning
EndOX

(F) = k, then the set of equivariant structures on F is a torsor under the
character group Ĝ = Hom(G,k×), cf. [Plo05, Lem. 3.5.(ii)].

Consider the n-fold product X = Xn
0 of a variety X0 endowed with the permutation

action by G = Sn, and let F ∈Mod(OX0) be some sheaf on X0.
(v) The box product F⊠n := pr∗

1F ⊗ · · · ⊗ pr∗
nF carries a canonical equivariant

structure

λF
⊠n

σ : F⊠n → σ∗F⊠n ≃ pr∗
σ−1(1)F ⊗ · · · ⊗ pr∗

σ−1(n)F

given by the braiding isomorphisms of the tensor product.

2.2.5. — Common constructions for sheaves of OX -modules make sense for equivari-
ant sheaves. Let (F, λF) and (G, λG) be G-equivariant sheaves on X.

(i) HomOX
(F,G) inherits the equivariant structure

λHom(F,G)
g (ψ) := λGg ◦ g∗(ψ) ◦ (λFg )−1.

The fixed points of the induces right action on global sections are exactly the
homomorphism F → G which are compatible with λF and λG.

(ii) F ⊗OX
G inherits the equivariant structure

λF⊗G
g := λFg ⊗ λGg : F ⊗ G→ g∗F ⊗ g∗G ≃ g∗(F ⊗ G).

Let f : X → Y be an equivariant morphism, relative to some given homomorphism
φ : G → H which we assume to be surjective in (iv), and let (H, λH) be an H-
equivariant sheaf on Y .

(iii) f∗H inherits the equivariant structure

λf
∗H
g := f∗λHφ(g) : f∗H→ f∗φ(g)∗H ≃ g∗f∗H,

where the last isomorphism comes from the equivariance condition φ(g)◦f = f◦g.
(iv) f∗F inherits the G-equivariant structure

λf∗F
g := f∗λ

F
g : f∗F → f∗g

∗F ≃ φ(g)∗f∗F,

where the last isomorphism comes from affine base change, cf. [SP, Tag 02KG].
Since ker(φ) acts trivially via φ on Y , we can take the fixed points subsheaf

f
ker(φ)
∗ F := (f∗F)ker(φ),

and λf∗F
g restricts, by surjectivity of φ, to a H-equivariant structure on fker(φ)

∗ F.
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2.2.6. Situation. — From now on we assume that char(k) does not divide the
order #G of G, so that the definitions/equations (2.2.1) and (2.2.2) become meaningful.

2.2.7. Equivariant derived categories. — The categories Coh(X)hG and
QCoh(X)hG of (quasi-)coherent equivariant sheaves are abelian categories and the
latter has enough injective objects, cf. [Gro57, §5.1], so we can consider their derived
categories.

A complex of equivariant sheaves (F•, λ•) gives rise to an object F• in the derived
category Db(X) carrying an equivariant object structure induced by λ•. So we get a
canonical functor

Db(Coh(X)hG)→ Db(X)hG

which is an equivalence since #G is invertible in k, see [Plo07, §1.1] or more generally
[Ela11; Ela14; Che15]. We define the equivariant derived category as

Db
G(X) := Db(X)hG. (2.2.1)

2.2.8. — See [LM; OlsASS] as general references for algebraic stacks. The Deligne–
Mumford quotient stack [X/G] has an étale atlas q : X → [X/G] given by the canonical
quotient map. Denote by σ : G×X → X the action morphism, and by µ : G×G→ G

the multiplication map. Then we have by [OlsASS, Ex. 8.1.12] a pullback square

G×X X

X [X/G],

pr2

σ

⌜ q

q

so a descent datum for a sheaf F on X with respect to q is an isomorphism

λ : pr∗
2F

∼−→ σ∗F

satisfying the cocycle condition

(µ× idX)∗(λ) = pr∗
23(λ) ◦ (idG×σ)∗(λ).

For the finite group G, such a datum is nothing else than an equivariant structure on F.
Following [OlsASS, Ch. 9], the upshot is that, essentially by faithfully flat descent,

Coh(X)hG ≃ Coh([X/G]) and Db
G(X) ≃ Db([X/G]).

From this point of view, the examples and constructions in Example 2.2.4 and ¶2.2.5
arise just as the natural generalizations from the case of schemes to the case of stacks.

2.2.9. — Let X and Y be smooth and proper Deligne-Mumford stacks over a field k
whose characteristic does not divide the orders of the stabilizer groups of X and Y ;
the latter property is called tameness. Analogous to the situation of varieties discussed
in §2.1 we can consider the derived functors associated to push-forward, pull-back,
and tensor product of coherent sheaves on stacks, see [LM, Thm. 15.6] and regarding
their boundedness in the tame case [OlsASS, Thm. 11.6.5], [Hal22, Thm. 2.1] and
[HR15, Thm. C]. For P ∈ Db(X × Y ) we have the Fourier-Mukai functor

FMP := RprY,∗(Lpr∗
X (−) L⊗ P) : Db(X )→ Db(Y ).
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In the case that X = [X/G] and Y = [Y/H] are global quotient stacks with, say,
X and Y smooth projective and endowed with actions by finite groups G and H,
respectively, a concrete explanation of the Fourier-Mukai formalism is given in [BBH,
§1.4] and [BL, §8] or, more briefly, in [BKR01, §4] and [Plo05, Ch. 3]. In particular,
the Fourier-Mukai functor FMP : Db

G(X)→ Db
H(Y ) maps (E, λ) to

RprGY,∗(Lpr∗
X(E) L⊗ P) ≃ (RprY,∗(Lpr∗

X(E) L⊗ P))G (2.2.2)

endowed with a certain equivariant structure. The orbifold version of Orlov’s rep-
resentability theorem (Theorem 2.1.10), see [Kaw04, Thm. 1.1], says that a derived
equivalence Db

G(X)→ Db
H(Y ) is (uniquely) represented by a Fourier-Mukai kernel in

the category Db
G×H(X × Y ) ≃ Db([X/G]× [Y/H]).

Let us recall Ploog’s method to enhance an invariant derived equivalence to an
equivalence of equivariant derived categories. For reference see [Plo07, §§1–2] or in
more detail [Plo05, Ch. 3].

2.2.10. Situation. — Let G be a finite group, acting on two smooth projective
varieties X and Y . Let us assume that H0(X,OX) = k and H0(Y,OY ) = k, e.g. X
and Y are geometrically connected, so that Proposition 2.1.13 can be used. We still
assume that char(k) does not divide the order #G of G.

2.2.11. — We consider the following three sets of derived equivalences: First, we
have the set of isomorphism classes of derived equivalences between Db(X) and Db(Y )
which commute with the G-action up to isomorphism. In terms of Fourier–Mukai
kernels, this is

Eq(Db(X),Db(Y ))G

≃ {P ∈ Db(X × Y ) | FMP : Db(X) ∼−→ Db(Y ), and ∀g ∈ G : (g, g)∗P ≃ P}/≃.

Second, we have the set of isomorphism classes of derived equivalences between Db
G(X)

and Db
G(Y ). These are represented by kernels which are endowed with an equivariant

structure for the (G×G)-action on X × Y , cf. ¶2.2.9, so

Eq(Db
G(X),Db

G(Y )) ≃ {(P̃, λ̃) ∈ Db
G×G(X × Y ) | FM(P̃,̃λ) : Db

G(X) ∼−→ Db
G(Y )}/≃.

Third, interpolating between the two cases above, we have the set of isomorphism
classes of derived equivalences Φ : Db(X) ∼−→ Db(Y ) which are endowed with an
equivariant structure witnessing that Φ “commutes coherently” with the G-action.
Again, in terms of kernels, this is

Eq(Db(X),Db(Y ))hG := {(P, λ) ∈ Db
∆G(X × Y ) | FMP : Db(X) ∼−→ Db(Y )}/≃,

where ∆G ⊂ G×G denotes the diagonal subgroup.

2.2.12. — The sets described in ¶2.2.11 are related to each other by a forgetful map
and and inflation map: The forgetful map

for : Db
∆G(X × Y )→ Db(X × Y )
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discards equivariant structures, i.e. it maps (P, λ) 7→ P. Note that the kernels in the
image of the forgetful map are still G-invariant under the diagonal G-action. The
forgetful map can be viewed as an instance of the pullback construction ¶2.2.5.(iii).

For the subgroup ∆G ⊂ G × G, or more generally any pair of sub-/supergroup,
there is an inflation map

infG×G
∆G : Db

∆G(X × Y )→ Db
G×G(X × Y )

which maps (P, ϕ) to
infG×G

∆G (P, ϕ) =
⊕

[g]∈∆G\G×G

g∗P

endowed with a suitable equivariant structure, see [BL, Def. 8.2.1] for details.

We want to apply [Plo07, Thm. 6] not only to autoequivalences but to the sets of
equivalences described above, so we spell out the following more general statement of
the theorem.

2.2.13. Theorem (Ploog). — Adopt the setting of Situation 2.2.10, so G is a finite
group which acts on two smooth projective varieties X and Y .

(i) We have an exact sequence of groups

0→ Hom(G,k×)→ Aut(Db(X))hG for−−→ Aut(Db(X))G δX−−→ H2(G,k×)

and an exact sequence of pseudo-torsors (i.e. possibly empty torsors)

Eq(Db(X),Db(Y ))hG for−−→ Eq(Db(X),Db(Y ))G δX,Y−−−→ H2(G,k×).

over the respective last three terms of the previous sequence, i.e. the maps are
equivariant in the sense of Definition 3.2.10 and im(for) = ker(δX,Y ).

(ii) Assume that G acts faithfully. We have an exact sequence of groups

0→ Z(G)→ Aut(Db(X))hG infG×G
∆G−−−−−→ Aut(Db

G(X))

and an equivariant map

Eq(Db(X),Db(Y ))hG infG×G
∆G−−−−−→ Eq(Db

G(X),Db
G(Y )).

of pseudo-torsors over the respective last two terms of the previous sequence.

Proof. — The part about groups is exactly [Plo07, Thm. 6]; the part about pseudo-
torsors is essentially proven in loc. cit. but not spelled out as such, so we provide a
few pointers.

The group structure on Aut(Db(X))hG and its action on Eq(Db(X),Db(Y ))hG are
given by convolution of Fourier–Mukai kernels

(P, λ) ⋆ (P′, λ′) := (P ⋆ P′, λ ⋆ λ′)

with (λ⋆λ′)g := (λg⋆λ′
g), which corresponds to composition of associated Fourier–Mukai

functors by [Plo07, Lem. 5.(3)], and it is clear that a composition of equivalences
is again an equivalence. Now [Plo07, Lem. 5.(5)] provides inverses for kernels of
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equivalences endowed with an equivariant structure, which lets one deduce that the
action is free and transitive.

Similarly the group law on Aut(Db(X))G and its action on Eq(Db(X),Db(Y ))G are
given by convolution, and as above one sees that the action is free and transitive. It is
clear that Eq(Db

G(X),Db
G(Y )) is a pseudo-torsor under Aut(Db

G(X)) since equivalences
of categories are invertible.

The description of the actions above settle that the forgetful map is equivariant.
The inflation map is equivariant since [Plo07, Lem. 5.(3)] implies that

inf(P, λ) ⋆ inf(P′, λ′) ≃ inf((P, λ) ⋆ (P′, λ′)).

The map δX,Y is defined in [Plo07, Lem. 1], where also the equality im(for) = ker(δX,Y )
is proven. The proof in [Plo07, Thm. 6.(2)] that δX is a group homomorphism shows
more generally that δX,Y is equivariant over δX .

2.2.14. — Let us discuss the obstruction maps δX,Y from Theorem 2.2.13 in slightly
more detail, cf. [Plo07, Lem. 1] or [Plo05, Lem. 3.5]. Let F ∈ Db(X) be a simple object,
i.e. EndDb(X)(F) = k. If F is G-invariant, there exists some isomorphisms λg : F ∼−→
g∗F for g ∈ G, which might not satisfy the cocycle condition required for an equivariant
structure. But

δg,h := λgh ◦ (h∗λg ◦ λh)−1 ∈ k×

by simplicity of F, and this provides a 2-cocycle δ : G × G → k×, cf. ¶3.1.9, whose
class

δ(F) := [δ] ∈ H2(G,k×)
is independent of the choice of the λg above. Note that if [δ] = 0, then there exists a
map β : G→ k× certifying that δ is the 2-boundary

δ(g, h) = g.β(h) · β(g) · β(gh)−1,

and λ′
g := β(g) · λg will be an equivariant structure.

Later on we will come to the predicament to consider equivariant structures on
non-simple sheaves of the form F⊕r, but where F is simple. We package the analysis of
the obstruction class δ(F) in such a setting into the following proposition. Afterwards
we check that we can use this proposition when G is a symmetric group.

2.2.15. Proposition. — As before, let G be a finite group, acting on a variety X
over k. Let F ∈ Coh(X) be a simple coherent sheaf on X, i.e. End(F) = k, and
assume that

(i) F is G-invariant, and
(ii) F⊕r carries a G-equivariant structure for some integer r ∈ N.

If every projective representation of G of dimension r lifts to a linear representation
of G,(2) then F itself admits a G-equivariant structure.

(2)Here we say that a projective representation ρ : G → PGL(V ) lifts to a linear one if ρ lifts to a
homomorphism ρ̃ : G → GL(V ).
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2.2.16. Remark. — Before coming to the proof of Proposition 2.2.15, let us motivate
why one would expect the statement, in spite of the brute force nature of its proof
below. Consider the short exact sequence

1→ k× → GL(r, k)→ PGL(r, k)→ 1

and endow its terms with trivial G-actions. Applying non-abelian group cohomology,
cf. §3.2, one would like to expect the exact sequence

H1(G,GL(r, k))→ H1(G,PGL(r, k))→ H2(G,k×) ∆−→ “ H2(G,GL(r, k))”.

The assumption concerning projective representations means that the first map is
surjective, so the map ∆ is injective. But ∆ maps the class which obstructs the
existence of an equivariant structure on E to the obstruction class for E⊕r, which is
trivial by assumption.

The problem is that we need to make sense of the H2(G,GL(r, k)) term; trying to
do so would lead us too far astray into non-abelian group cohomology.

Proof of Proposition 2.2.15. — Since F is G-invariant, we can pick isomorphisms
λg : F ∼−→ g∗F for each g ∈ G, and define isomorphisms λ′

g := λ⊕r
g : F⊕r ∼−→ g∗F⊕r.

The obstruction for (λg)g to give an equivariant structure is measured by

δg,h := (h∗λg ◦ λh)−1 ◦ λgh ∈ k×.

Similarly we have the obstruction δ′
g,h ∈ GL(r, k) for (λ′

g)g to be an equivariant
structure; actually we have δ′

g,h = (δg,h)⊕r. By assumption F⊕r admits an equivariant
structure (λ′′

g )g, so we can find elements φg ∈ GL(r, k) such that λ′′
g = λ′

g ◦ φg.
We claim that the obstruction δ′′

g,h of λ′′ (which is by assumption just the identity)
satisfies

δ′
g,h = φ−1

gh ◦ φg ◦ φh ◦ δ
′′
g,h.

Indeed we have by construction

λ′′
gh = h∗λ′′

g ◦ λ′′
h ◦ δ′′

g,h = h∗(λ′
g ◦ φg) ◦ λ′

h ◦ φh ◦ δ′′
g,h

λ′′
gh = λ′

gh ◦ φgh = h∗λ′
g ◦ λ′

h ◦ δ′
g,h ◦ φgh,

so we get φg ◦ λ′
h ◦ φh ◦ δ′′

g,h = λ′
h ◦ δ′

g,h ◦ φgh, since the functor h∗ is linear. Now the
matrices φg ∈ GL(r, k) and λ′

h = diag(λh, . . . , λh) commute, so we get

φg ◦ φh ◦ δ′′
g,h = δ′

g,h ◦ φgh.

Finally we arrive at the desired equation φg ◦ φh ◦ δ′′
g,h = φgh ◦ δ′

g,h, since δ′
g,h =

diag(δg,h, . . . , δg,h) commutes with φgh.
As a consequence, since by assumption δ′′

g,h = id and δ′
g,h = diag(δg,h, . . . , δg,h) is

diagonal, the map
φ : G→ GL(r, k)

is a projective representation of G whose obstruction to being linear is exactly measured
by (δg,h)g,h. When the projective representation φ comes from a linear one, the
class [δ] ∈ H2(G,k×) becomes zero, so F admits an G-equivariant structure.
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2.2.17. Proposition. — Assume that k = k is algebraically closed(3). Let G = Sn
be a symmetric group and assume r ∈ N is odd, then every projective representation
of Sn of dimension r is already linear, i.e. the map

Hom(Sn,GL(r, k))→ Hom(Sn,PGL(r, k))

is surjective.

Proof. — We claim that every non-linear projective representation of Sn is even
dimensional. So any representation ρ : Sn → PGL(r, k), where r is odd by assumption,
must be linear.

Schur [Sch11] shows that for n ≥ 4 the irreducible(4) non-linear projective represen-
tations of Sn are indexed by strict partitions (λi)i of n, that is λ1 + · · ·+ λℓ = n and
λ1 > · · · > λℓ. For n ≤ 3 there are no irreducible non-linear projective representations
of Sn. Their dimension is given by the formula

fλ = 2⌊ n−ℓ
2 ⌋gλ with gλ = n!

λ1! · · ·λℓ!
∏
i<j

λi − λj
λi + λj

.

The number gλ is in fact an integer since it counts certain “shifted standard tableaux
of shape λ”, cf. [MacSF, III.8 Ex. 12]. By the strictness of the partitions, we have
n ≥ ℓ+ 2, so fλ is an even integer.

In order to conclude, we use general facts about the projective representations
of a finite group G to reduce to the irreducible case, see [KarGR, Ch. 2–3] for
details and explanations. Every projective representation ρ : G→ PGL(r, k) has an
obstruction class c(ρ) ∈ H2(G,k×) which measures its failure to be linear. Now any
projective representation ρ decomposes into a direct sum of irreducible projective
representations ρi with the same obstruction class c(ρi) = c(ρ) as the one of ρ. For the
convenience of the reader who is familiar with linear, but not projective, representations
of finite groups, we briefly explain the proceeding facts:

For any finite group G, there exists a Schur cover G̃ of G, which is by definition
given by an extension

0→ H2(G,Z)→ G̃→ G→ 0
satisfying H2(G,Z) ⊂ Z(G̃) ∩ [G̃, G̃]. The Schur cover G̃ has the property that every
projective representation ρ of G lifts to a linear representation ρ̃ of G̃, i.e. we have a
diagram

0 H2(G,Z) G̃ G 0

1 k× GL(r, k) PGL(r, k) 1.

c(ρ) ρ̃ ρ

(3)It suffices to assume that k× = k×2. Then H1(Sn,Z) ≃ Sab
n ≃ Z/2Z together with the universal

coefficient theorem imply that H2(Sn, k×) → H2(Sn, k×) is injective, cf. Proposition 3.1.29.(ii). So a
non-linear projective representation of Sn stays non-linear when base-changing from k to k.
(4)A projective representation ρ : Sn → PGL(r′, k) is irreducible if no proper subspace 0 ̸= V ⊊ k⊕r′

exists which is fixed by every element in im(ρ).
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We have H2(G,Z) ≃ Hom(H2(G,Z),k×) by the universal coefficient theorem, cf. Propo-
sition 3.1.29, and the character c(ρ) in the diagram above becomes the obstruction
class mentioned before. After a change of basis of k⊕r, which does not affect c(ρ), one
can write ρ̃ as a direct sum of irreducible representations ρ̃i : G̃ → GL(ri,k). Then
one sees that each ρ̃i descends to a projective representation ρi : G → PGL(ri,k)
with c(ρi) = c(ρ).

We now discuss Bridgeland–King–Reid’s derived McKay correspondence [BKR01],
which allows one to view the derived categories of some equivariant Hilbert schemes,
cf. ¶1.1.12, as equivariant derived categories. See also [BBH, §7.6] for a terse account.

2.2.18. Situation. — Let G be a finite group, acting faithfully on a connected,
smooth, projective variety X over an algebraically closed field k of characteristic 0.

2.2.19. — Recall the equivariant Hilbert scheme HilbG(X) from ¶1.1.12, which is
a (irreducible component of the) fine moduli space of G-clusters. Thus there is a
universal G-cluster

Z ↛↪→ HilbG(X)×X,
which is in particular a closed subscheme and it is finite and flat over HilbG(X).
Since Z is a {id} × G-invariant subscheme, its structure sheaf OZ is equivariant by
Example 2.2.4.(i) and ¶2.2.5.(iv), so

OZ ∈ Db
{id}×G(HilbG(X)×X)

and we have a Fourier-Mukai functor

FMOZ
: Db(HilbG(X))→ Db

G(X)

as described in ¶2.2.9. Recall also the Hilbert-Chow morphism HC: HilbG(X)→ X/G

from ¶1.1.12.

2.2.20. Theorem (Derived McKay correspondence). — Assume that the canon-
ical sheaf ωX is locally trivial as a G-equivariant sheaf,(5) and the dimension condition

dim(HilbG(X)×X/G HilbG(X)) ≤ dim(X) + 1 (2.2.3)

is satisfied. Then HC: HilbG(X)→ X/G is a crepant resolution of singularities and

FMOZ
: Db(HilbG(X)) ∼−→ Db

G(X)

is a derived equivalence. Moreover, whenever X is a symplectic variety, G acts via
symplectic automorphisms, and HilbG(X) → X/G is a priori a crepant resolution,
then condition (2.2.3) is satisfied.

Proof. — See [BKR01, Thm. 1.1, Cor. 1.3].

(5)The canonical sheaf ωX is locally trivial as a G-equivariant sheaf if every point on X has a
G-invariant open neighborhood U on which (ωX , λωX ) is isomorphic to the trivial line bundle OX

equipped with its canonical G-equivariant structure, cf. Example 2.2.4. In practice this amounts to
asking that on U there exists a nowhere vanishing G-invariant n-form, where n = dim(X).
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2.2.21. Proposition. — Let S be a smooth, projective surface, A an abelian surface,
and n ∈ N. Then we have

Db(Hilbn(S)) ≃ Db(HilbSn(S×n)) ≃ Db
Sn

(S×n)

and
Db(Kumn−1(A)) ≃ Db(HilbSn(A⊗ Γn)) ≃ Db

Sn
(A⊗ Γn).

Proof. — The derived equivalences on the left hand sides are induced from isomor-
phisms of varieties and were discussed in ¶1.1.12 and Proposition 1.1.14, respectively.
The equivalences on the right hand sides come from the derived McKay correspondence
(Theorem 2.2.20); we check its assumptions first for the case of Hilbert schemes of
points and afterwards for the case of generalized Kummer varieties.

Assume that S has a trivial canonical sheaf ωS ≃ OS , so S is a symplectic variety,
say with symplectic form σ ∈ H0(S,Ω2

S). Then also S×n is a symplectic variety, with
symplectic form

σ′ := pr∗
1σ + · · ·+ pr∗

nσ,

and it becomes clear that Sn acts via symplectic automorphisms. The Pfaffian

pf(σ′) := 1
n!σ

′∧n = pr∗
1σ ∧ · · · ∧ pr∗

nσ ∈ H0(S×n, ωS×n)

is then also Sn-invariant and nowhere vanishing, since the square of the Pfaffian is the
determinant of the symplectic form σ′. So ωS×n is trivial as an equivariant sheaf. We
already know that the Hilbert-Chow morphism HilbSn(S×n)→ Symn(S) is a crepant
resolution, cf. Example 1.1.9 and ¶1.1.12, so all conditions of Theorem 2.2.20 are
satisfied.

As explained in [Plo07, §3] one deduces the result for smooth projective surfaces
by checking condition (2.2.3) locally on S, so that one can assume without loss of
generality ωS ≃ OS .

Regarding generalized Kummer varieties, we have seen in Proposition 1.1.15 that

HilbSn(A⊗ Γn)→ (A⊗ Γn)/Sn
is a crepant resolution. In the proof of this fact we have exhibited a Sn-invariant
volume form ω ∈ H0(A⊗ Γn, ωA⊗Γn

), cf. (1.1.2), so ωA⊗Γn
is trivial as an equivariant

sheaf. The form ω is the Pfaffian of the Sn-invariant 2-form

dz1 ∧ dz′
1 + · · ·+ dzn−1 ∧ dz′

n−1,

with notation as in Proposition 1.1.15, so the latter is non-degenerate, as desired.
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2.3. Derived equivalences of abelian varieties and Kummer surfaces

The study of derived equivalences of abelian varieties was established by
Mukai [Muk81; Muk98], Polishchuk [Pol96], and Orlov [Orl02]. For an exposition
of the theory see [HuyFM, Ch. 9]. See [PolAV, Ch. 11, Ch. 15] for Polishchuk’s
viewpoint. In this section we mainly focus on Orlov’s construction in the setting of
abelian varieties, and afterwards we briefly discuss derived equivalences of Kummer
surfaces, following [Plo07] and [HLOY03]. In addition to this summary and survey, we
spell out some computations about groups of symplectic isomorphisms of an abelian
variety, which were certainly known to Mukai.

2.3.1. Theorem (Mukai). — Let A be an abelian variety over an algebraically
closed field k, then A and its dual abelian variety A∨ are derived equivalent,

Db(A) ≃ Db(A∨).

Proof. — See [Muk81, Thm. 2.2]. The derived equivalence constructed by Mukai is
given by the Fourier–Mukai functor

FMP : Db(A)→ Db(A∨),

where P ∈ Pic(A×A∨) is the Poincaré bundle, cf. ¶1.2.8. It is shown that

FMP ◦FMPt = [−1]A∨,∗ ◦ [−g] and FMPt ◦FMP = [−1]A,∗ ◦ [−g],

where g := dim(A), and Pt is the Poincaré bundle on A∨ × A, and [−1]A : A → A

denotes the negation involution of A.

Mukai, Polishchuk, and later Orlov, introduced and studied the following group
of “symplectic” isomorphisms in order to describe derived equivalences of abelian
varieties.

2.3.2. Definition (Symplectic isomorphisms). — Let A and B be abelian
varieties. For a homomorphism f : A×A∨ → B ×B∨ of abelian varieties we write

f =
(
f1 : A→ B f2 : A∨ → B

f3 : A→ B∨ f4 : A∨ → B∨

)
and f̃ :=

(
f∨

4 −f∨
2

−f∨
3 f∨

1

)
,

where we have implicitly identified A with A∨∨, and B with B∨∨ via (1.2.1). Denote
by

Sp(A,B) := {f : A×A∨ ∼−→ B ×B∨ | f̃ = f−1}
the set of symplectic isomorphisms, and define the Mukai–Polishchuk group as Sp(A) :=
Sp(A,A). We call a symplectic isomorphism f admissible if any fi is an isogeny.

2.3.3. Remark. — A symplectic isomorphism f ∈ Sp(A,B) is admissible if any
component fj is zero, since then some other component fi has to be an isomorphism.

2.3.4. Remark (on viewpoint and notation). — Mukai and Orlov use the
notation U(A×A∨) instead of Sp(A) and call elements of it “unitary” and “isometries”,
respectively. Polishchuk considers the notion of symplectic biextensions and thus
suggests to call elements of Sp(A) symplectic. As discussed in [LT17, §1], over the
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complex numbers, the group Sp(A) can be realized as a unitary group as well as a
symplectic group, but Polishchuk’s symplectic viewpoint works over arbitrary fields.

Over the complex numbers, one can also describe the elements of Sp(A) as Hodge
isometries

H1(Aan,Z)⊕H1(Aan,Z)∨ → H1(Aan,Z)⊕H1(Aan,Z)∨,

where both sides are endowed with the pairing q(a, α) := 2α(a), cf. [HuyFM, Cor. 9.50].
We write Sp(A) instead of Polishchuk’s Sp(A × A∨), since the latter would be

too heavy notation for us later on, so we prefer the shorter form. The following
propositions, which we will synthesize in Proposition 5.1.9, affirm the terminology
“symplectic”.

2.3.5. Proposition. — Let A be a principally polarizable abelian variety which
satisfies End(A) = Z. Then, for n ∈ N,

Sp(A×n) ≃ Sp(2n,Z)

is a classical symplectic group.

Proof. — Denote by λ0 : A ∼−→ A∨ the (unique) principal polarization of A, and
let f ∈ Sp(A×n) ≃ Sp(A⊗ Zn). Then, by the assumption End(A) = Z, we can write

f1 = id ⊗ g1 ∈ Hom(A,A)⊗HomZ(Zn,Zn)

f2 = λ−1
0 ⊗ g2 ∈ Hom(A∨, A)⊗HomZ(Zn∨,Zn)

f3 = λ0 ⊗ g3 ∈ Hom(A,A∨)⊗HomZ(Zn,Zn∨)
f4 = id ⊗ g4 ∈ Hom(A∨, A∨)⊗HomZ(Zn∨,Zn∨).

Taking the standard basis of Zn and its dual basis of Zn∨, we can view each gi as a
matrix Mi ∈ Mat(n×n,Z). Since λ−1

0 ◦λ0 = id and λ0◦λ−1
0 = id, multiplication in the

group Sp(A×n) corresponds to matrix multiplication, so we get a group homomorphism

Sp(A×n)→ Mat(2n× 2n,Z) (2.3.1)

f 7→
(
M1 M2
M3 M4

)
.

Let us compute the matrix corresponding to f̃ . Recall that g∨
i corresponds to the

transposed matrix M t
i . Now, identifying A with A∨∨ implicitly, we get by definition,

substitution, and since polarizations are symmetric, cf. Definition 1.2.17, that

f̃ =
(
f∨

4 −f∨
2

−f∨
3 f∨

1

)
=
(

id∨⊗g∨
4 −(λ−1

0 )∨ ⊗ g∨
2

−λ∨
0 ⊗ g∨

3 id∨⊗g∨
1

)
=
(

id⊗g∨
4 −(λ−1

0 )⊗ g∨
2

−λ0 ⊗ g∨
3 id⊗g∨

1

)
,

which corresponds to the matrix(
M t

4 −M t
2

−M t
3 M t

1

)
= J t

(
M1 M2
M3 M4

)t

J where J =
(

0 In
−In 0

)
.

This means that the condition f̃ = f−1 singles out symplectic matrices. In conclusion,
the map in (2.3.1) provides the desired isomorphism.
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2.3.6. Definition. — The Hecke congruence subgroup of level l ∈ N \ {0} is defined
as

Γ0(l) :=
{(

a1 a2
a3 a4

)
∈ SL(2,Z)

∣∣∣∣ a3 ≡ 0 mod l

}
.

2.3.7. Proposition. — Let A be an abelian variety satisfying End(A) = Z. Write
Hom(A,A∨) = Z · λ0 and Hom(A∨, A) = Z · λ′

0, where λ0 and λ′
0 are polarizations,

and define l ∈ N by λ0 ◦ λ′
0 = [l]. Then we have an isomorphism

Sp(A) ≃ Γ0(l) ⊂ SL(2,Z)

with the Hecke congruence subgroup of level l.

Proof. — Let f ∈ Sp(A), then we can write

f =
(
a1 · id a2 · λ′

0
a3 · λ0 a4 · id

)
for some ai ∈ Z. Since λ′

0 ◦ λ0 = [l] and λ0 ◦ λ′
0 = [l], multiplication in Sp(A) is not

quite matrix multiplication. Instead we get a group homomorphism

Sp(A)→ Mat(2× 2,Z) (2.3.2)

f 7→
(
a1 a2
l · a3 a4

)
.

The same calculation of f̃ as in the proof of Proposition 2.3.5 explains that the
condition f̃ = f−1 singles out symplectic matrices. But Sp(2,Z) = SL(2,Z), so the
map (2.3.2) provides the desired isomorphism.

Next we discuss Orlov’s fundamental short exact sequence which describes derived
equivalences of abelian varieties in terms of symplectic isomorphisms.

2.3.8. Theorem (Orlov). — Let A and B be two abelian varieties over an alge-
braically closed field k of characteristic 0, then we have a short exact sequence of
groups

0→ Z×A(k)×A∨(k)→ Aut(Db(A)) γA−−→ Sp′(A)→ 0, (2.3.3)
and a surjective map

γA,B : Eq(Db(A),Db(B)) ↠ Sp′(A,B),

where Sp′(A) ⊂ Sp(A), respectively Sp′(A,B) ⊂ Sp(A,B), is a subgroup/subset which
contains all admissible symplectic isomorphisms.(6)

Moreover, the maps γA and γA,B are compatible in the sense that

γA,B(Φ′ ◦ Φ) = γA,B(Φ′)γA(Φ) (2.3.4)

for every Φ ∈ Aut(Db(A)) and Φ′ ∈ Eq(Db(A),Db(B)).

(6)According to Orlov we should have Sp′(A, B) = Sp(A, B), but see Remark 2.3.14.
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2.3.9. Notation. — We will use the notation

Sp′(A,B) := im(γA,B : Eq(Db(A),Db(B))→ Sp(A,B)).

Proof of Theorem 2.3.8. — See [Orl02, Thm. 4.14, Prop. 4.11, Prop. 4.12]. Let us
also mention Polishchuk’s work [Pol96] and the exposition in [HuyFM, §§9.4–9.5].

The left hand side inclusion in (2.3.3) arises as the composition of the standard
autoequivalence inclusion (2.1.4) with the homomorphism

A(k)×A∨(k) ↪→ Aut(A) ⋉ Pic(A),
(a, α) 7→ (ta,Pα)

where the product on the left hand side is indeed a direct product, since line bundles
in A∨(k) are by definition translation invariant. So n ∈ Z is mapped to the shift
functor [n], and a ∈ A is mapped to the push-forward (ta)∗ along the translation
morphism ta, and α ∈ A∨ is mapped to the twist functor Pα ⊗−.(7)

We reproduce some details below in ¶2.3.10 about the definition of the maps γA and
γA,B and discuss the construction witnessing their surjectivity in Construction 2.3.12.

2.3.10. — Let A and B be abelian varieties over any field k. The definition of the
map γA,B involves replacing an equivalence Φ : Db(A) → Db(B) by an equivalence
FΦ : Db(A × A∨) → Db(B × B∨) which is closer to geometry in the sense that it
can be realized as push-forward along an isomorphism γA,B(Φ) followed by a line
bundle twist. Let E ∈ Db(A×B) be the Fourier–Mukai kernel of the equivalence Φ,
and set ER := E∨[dim(A)] := RHom(E,OA×B)[dim(A)], which is again a kernel of an
equivalence, since it is the transpose(8) of the inverse of Φ. Now FΦ is defined as the
composition of equivalences

Db(A×A∨) Db(B ×B∨)

Db(A×A) Db(B ×B)

Db(A×A) Db(B ×B),

(id,FMPA
)

FΦ

(+A,id)∗

(id,FMPB
)−1

(FME,FM
ER )

(+B ,id)−1
∗

(2.3.5)

cf. [Orl02, Def. 2.9] and [HuyFM, Def. 9.34].
Consider the autoequivalence Φ(a,α) := ta,∗ ◦ (Pα ⊗ −) ≃ (Pα ⊗ −) ◦ ta,∗ for a

rational point (a, α) ∈ A×A∨. The vertical map on the left side of (2.3.5) assembles
all these autoequivalences together by mapping the skyscraper sheaf k(−a, α) to the
kernel OΓta

⊗ pr∗
1Pα of the autoequivalence Φ(a,α), cf. [Orl02, Ass. 2.8]. The horizontal

(7)This differs from Ploog’s convention in [Plo05] by a sign, where a ∈ A is mapped instead to the
pullback functor (ta)∗ = (t−a)∗.
(8)Given a kernel E ∈ Db(A×B), its transpose Et ∈ Db(B ×A) is the object corresponding to E under
the equivalence Db(A × B) ≃ Db(B × A) induced by the canonical identification A × B ∼−→ B × A.
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map at the bottom of (2.3.5) maps a Fourier–Mukai kernel F ∈ Db(A × A) to the
kernel of the conjugated functor

FM−1
Et ◦FMF ◦FMEt : Db(B)→ Db(B),

where Et is the transpose of E, cf. [Orl02, Lem. 1.6].
As promised, FΦ maps skyscraper sheaves to skyscraper sheaves and hence is of the

form
FΦ ≃ (LΦ ⊗−) ◦ γA,B(Φ)∗

for some line bundle LΦ ∈ Pic(B ×B∨) and isomorphism

γA,B(Φ) : A×A∨ → B ×B∨

of abelian varieties, cf. [Orl02, Thm. 2.10]. The map γA,B factors over Sp(A,B) ⊂
Isom(A × A∨, B × B∨) by [Orl02, Prop. 2.18], and the compatibility (2.3.4) with
composition holds by [Orl02, Prop. 2.15].

The last property we want to mention is that we have γA,B(Φ)(a, α) = (b, β) if and
only if

Φ(b,β) ◦ Φ ≃ Φ ◦ Φ(a,α), (2.3.6)
cf. [Orl02, Cor. 2.13] or [HuyFM, Cor. 9.44].

2.3.11. Example. — We summarize [HuyFM, Ex. 9.38] and [Plo05, Ex. 4.5](9).
(i) For L ∈ Pic(A) we have

γA(L⊗−) =
(

id 0
φL id

)
.

So when L ∈ Pic0(A), we get γA(L⊗−) = id, as Orlov’s theorem claims.
(ii) Let a ∈ A and f ∈ IsomAV(A,B) an isomorphism, then γA((ta)∗) = id and

γB,A(f∗) =
(
f−1 0

0 f∨

)
.

(iii) For the Poincaré bundle P ∈ Pic(A×A∨) we have

γA,A∨(FMP) =
(

0 id
− id 0

)
.

2.3.12. Construction. — We summarize the steps of Orlov’s construction [Orl02,
Constr. 4.10] concerning the image of the map γA,B : Eq(Db(A),Db(B))→ Sp(A,B)
in Theorem 2.3.8. The construction makes use of Mukai’s theory of semi-homogeneous
vector bundles, which we recalled in §1.3, and consists of the following steps:

(1) Consider a symplectic isomorphism

f =
(
f1 f2
f3 f4

)
∈ Sp(A,B)

and assume that the map f2 : A∨ → B is an isogeny.

(9)Beware of a misprint in [Plo05, Ex. 4.5.(3)] where f∗ was mistyped as f∗.
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(2) Denote by f−1
2 the inverse isogeny of f2 with rational coefficients, and subse-

quently define the map g ∈ Hom(A×B,A∨ ×B∨)⊗Z Q by

g :=
(
f−1

2 ◦ f1 −f−1
2

−(f−1
2 )∨ f4 ◦ f−1

2

)
.

Its dual morphism is

g∨ :=
(
f∨

1 ◦ (f−1
2 )∨ (−f−1

2 )∨∨

−(f−1
2 )∨ (f−1

2 )∨ ◦ f∨
4

)
.

(3) Since f is symplectic, we have −f1 ◦ f∨
2 + f2 ◦ f∨

1 = 0 and f∨
4 ◦ f2 − f∨

2 ◦ f4 = 0
by multiplying out matrices while suppressing evaluation isomorphisms (1.2.1).
So we see that g is symmetric, i.e. g = g∨ ◦ ev. Hence g is contained in the
image of the injection

NS(A×B)⊗Z Q ↪→ Hom(A×B,A∨ ×B∨)⊗Z Q

which associates to a line bundle L the map φL(x) = t∗
xL⊗ L∨, cf. ¶1.2.11. So

the map g corresponds to an element

µ := [L]⊗ 1
ℓ
∈ NS(A×B)⊗Z Q.

Then Orlov takes a simple semi-homogeneous vector bundle E on A×B of slope µ,
and considers it as a Fourier–Mukai kernel. Following Mukai, a construction of E is
given by the following steps:

(4) By Proposition 1.3.7.(i), the sheaf

F := [ℓ]∗(L⊗ℓ)

is a semi-homogeneous vector bundle on A×B of slope µ(F) = µ.
(5) Consider a Jordan–Hölder filtration 0 = F0 ⊂ · · · ⊂ Fk = F, where each

Ei = Fi/Fi−1

is a simple semi-homogeneous vector bundle of slope µ(Ei) = µ, cf. Proposi-
tion 1.3.7.(ii). Finally, take any of the vector bundles Ei as the kernel of a
Fourier–Mukai functor

FMEi
: Db(A)→ Db(B).

Then Orlov shows in [Orl02, Prop. 4.11, Prop. 4.12] using the theory of semi-
homogeneous vector bundles that the Fourier–Mukai functor FMEi is a desired derived
equivalence satisfying

γA,B(FMEi
) = f.

2.3.13. Remark. — Forgetting about f3 in step (2) of Construction 2.3.12 is not an
issue. Indeed, since f is a symplectic isomorphism we have −f3 ◦ f∨

2 + f4 ◦ f∨
1 = id,

and since f2 is assumed to be an isogeny, this determines f3 uniquely.
The arbitrary choice of one of the graded pieces Ei in step (5) of Construction 2.3.12

is also no reason for concern, since the kernel in Orlov’s sequence (2.3.3) allows for
some flexibility when constructing a preimage of some symplectic isomorphism.
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2.3.14. Remark. — In Construction 2.3.12 one assumes that f2 is an isogeny, and
Orlov claims without proof that a symplectic isomorphism can always be factored into
the composition of two symplectic isomorphisms which satisfy this extra condition, cf.
[Orl02, p. 591]. But it is not clear how to perform such a factorization in general. The
article [LT17] focuses on this gap in Orlov’s proof and addresses the issue for simple
abelian varieties. Let us explain that every admissible symplectic isomorphism lies in
the image.

2.3.15. Proposition. — The image Sp′(A,B) := im(γA,B) ⊂ Sp(A,B) contains all
admissible symplectic isomorphism in the sense of Definition 2.3.2. In particular, if A
is a simple abelian variety, then we have an equality Sp′(A,B) = Sp(A,B).

Proof. — Let f ∈ Sp(A,B) be a symplectic isomorphism and write

f =
(
f1 f2
f3 f4

)
.

(a) By Construction 2.3.12 we know that f ∈ im(γA,B) if f2 : A∨ → B is an isogeny.
(b) Just as an exercise with the constructions encountered so far, let us spell out the

case f2 = 0 without appealing to case (c) below. If f2 = 0, we know that f1 : A→ B

is an isomorphism with inverse f∨
4 . Using Example 2.3.11, we see that

γB,A(f∗
1 )f =

(
f−1

1 0
0 f∨

1

)(
f1 0
f3 f−1,∨

1

)
=
(

id 0
f∨

1 f3 id

)
. (2.3.7)

We know that f∨
1 f3 : A→ A∨ is a symmetric homomorphism, since f is symplectic.

So there exists a line bundle L ∈ Pic(A) such that f∨
1 f3 = φL, cf. ¶1.2.11. Then the

right hand side of (2.3.7) is γA(L⊗−) by Example 2.3.11, and we get

f = γB,A(f∗
1 )−1γA(L⊗−) ∈ im(γA,B).

(c) Assume that some fi is an isogeny. Let PA ∈ Pic(A × A∨) be the Poincaré
bundle of A, and let PB be the Poincaré bundle of B. We know that

γA,A∨(FMPA
) =

(
0 id
− id 0

)
by Example 2.3.11. Then pre- and/or post-composition with γA∨,A(FM−1

PA
) and

γB,B∨(FMPB
) allows to rearrange the matrix entries of f so that we can reduce to

case (a) or (b).
Finally, we consider a simple abelian variety A. Without loss of generality, we

can assume that Sp(A,B) is non-empty; in particular dim(A) = dim(B). So a
homomorphism f : A→ B is an isogeny if and only if ker(f) is finite. But by simplicity
of A, either ker(f) = A or dim(ker(f)) = 0, as desired.

We now come to the discussion of derived equivalences of Kummer K3 surfaces, cf.
Example 1.1.6.
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2.3.16. Theorem (Hosono–Lian–Oguiso–Yau). — Let A and B be abelian sur-
faces over the field C of complex numbers, then we have

Db(A) ≃ Db(B) if and only if Db(Kum1(A)) ≃ Db(Kum1(B)),

and, even stronger, this is also equivalent to Kum1(A) ≃ Kum1(B).

Proof. — See [HLOY03, Thm. 0.1]. The argument uses the derived Torelli theorem
for K3 surfaces and for abelian surfaces, cf. [BM01, Thm. 5.1], which classifies derived
equivalences in terms of Hodge isometries of transcendental lattices. The stronger
statement is due to the fact that Kummer K3 surfaces have no non-trivial Fourier–
Mukai partners, as discussed in ¶2.1.14.

By Remark 1.1.17 a Kummer surface is exactly a generalized Kummer variety
Kum1(A) of dimension 2. So by Proposition 2.2.21 its derived category can be
described as an equivariant derived category,

Db(Kum1(A)) ≃ Db
⟨−1⟩(A) ≃ Db([A/⟨−1⟩]). (2.3.8)

2.3.17. Theorem (Stellari). — Let A and B be abelian varieties (of any dimension)
over an algebraically closed field k of characteristic 0. Then

Db(A) ≃ Db(B) implies Db
⟨−1⟩(A) ≃ Db

⟨−1⟩(B).

Proof. — See [Ste07, Thm. 1.1]. Analyzing the map γA,B in Theorem 2.3.8 with
respect to the involution action by [−1]A : A→ A yields a surjection

γA,B : Eq(Db(A),Db(B))⟨−1⟩ ↠ Sp′(A,B),

as explained in [Ste07, Prop. 3.1]. By assumption there exists a derived equivalence
between A and B, which witnesses that the set of symplectic isomorphisms on the right
is non-empty. Since the Schur multiplier H2(Z/2Z,k×) = 0 is trivial, cf. Example 3.1.30,
one can then employ Ploog’s method (Theorem 2.2.13) to enhance an invariant derived
equivalence to a derived equivalence of equivariant categories.

Ploog himself focuses on the case of derived autoequivalences in [Plo07] and obtains
the following theorem about Kummer surfaces.

2.3.18. Theorem (Ploog). — Let A be an abelian surface over an algebraically
closed field k of characteristic 0. Then we have a short exact sequence

0→ Z×A[2]×A∨[2]→ Aut(Db(A))⟨−1⟩ → Sp′(A)→ 0, (2.3.9)

and the group of invariant autoequivalences fits into the diagram

Aut(Db(A))⟨−1⟩ ↞ Aut(Db(A))h⟨−1⟩ → Aut(Db(Kum1(A))),

where both maps have kernels isomorphic to Z/2Z.

Proof. — See [Plo07, §3.2] or [Plo05, §4.2]. Sequence (2.3.9) arises by taking Z/2Z-
invariants of Seq. (2.3.3) in Theorem 2.3.8. The right exactness of the sequence results
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from the vanishing of the group cohomology group

H1(Z/2Z,Z×A×A∨) = 0.

Note that Sp′(A) is unaffected by taking invariants, since the action is given by
conjugation with

γA([−1]∗A) = diag(− id,− id),
cf. Example 2.3.11.

The second diagram in the statement comes directly from Theorem 2.2.13 in
view of the identification (2.3.8), the vanishing H2(Z/2Z,k×) = 0, and the facts
Z(Z/2Z) = Z/2Z and Hom(Z/2Z,k×) ≃ Z/2Z.

2.3.19. Remark. — In Part II we prove the analog of Theorem 2.3.18 for higher
dimensional generalized Kummer varieties, cf. Theorem 5.2.4. In particular, we study
the vanishing of group cohomology in degree 1 in this setting, cf. §4.2, and the invariant
elements in the Mukai–Polishchuk group, cf. §5.1. We invite the reader to contrast
the details of our results with Sequence (2.3.9) in Theorem 2.3.18.

We will also generalize the train of thought in the proof of Theorem 2.3.17 beyond
the case n = 2, whereby we recover in particular the theorem just mentioned, cf.
Remark 6.1.9.





CHAPTER 3

Group cohomology

3.1. Abelian group cohomology

There are many references for the theory of group cohomology, we will refer to
[WeiIHA, Ch. 6], and [NSW, Ch. I], and [BroCG]. The way we define various notions
is not meant to be the most efficient ansatz, but rather tries to, firstly, be robust
regarding the different fundamental approaches to group cohomology and, secondly,
provide some details that are otherwise often unstressed in the literature but useful
for computations later on. Everything in this section is standard material, except for
the proof of Proposition 3.1.23, which we could not locate in the literature; it allows
us to provide a streamlined proof of Proposition 3.1.24.

3.1.1. Situation. — Let G be a group acting (from the left) on an abelian group A
by homomorphisms.

3.1.2. — That is, A is a Z[G]-module, where the group algebra Z[G] is the free
abelian group generated by the elements of G and multiplication is extended linearly
from the multiplication law of G. Thus, a morphism φ : A→ B of Z[G]-modules is a
group homomorphism which is equivariant, i.e. φ(g.a) = g.φ(b) for every g ∈ G and
a ∈ A. The homomorphism group HomZ(A,B) becomes a Z[G]-module via the action

g.φ := g. ◦ φ ◦ g.−1,

so that its fixed points (cf. ¶3.1.3) are exactly the equivariant homomorphisms

HomZ[G](A,B) = HomZ(A,B)G.

3.1.3. — Define AG := {a ∈ A | g.a = a for all g ∈ G} as the subgroup of G-fixed
points of A. The elements of AG are also called G-invariant. The construction of
taking G-invariants becomes a functor

(−)G : Mod(Z[G])→Mod(Z)

by sending morphism to their underlying group homomorphisms. Note that we have a
natural isomorphism of functors

(−)G ≃ HomZ[G](Z,−),
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where Z carries the trivial G-action. We see that these are additive functors of abelian
categories (with enough injectives), which are moreover left-exact.

Similarly, the G-coinvariants of A are AG := A/⟨g.a − a | g ∈ G, a ∈ A⟩. Since
Z[G]G ≃ Z with trivial action, we obtain a natural isomorphism of right-exact functors

(−)G ≃ Z⊗Z[G] (−) : Mod(Z[G])→Mod(Z).

3.1.4. Definition (Group cohomology). — The group cohomology Hi(G,A) of G
in degree i with values in A is the right derived functor of (−)G evaluated at A

Hi(G,A) := Ri(A)G ≃ ExtiZ[G](Z, A).

The group homology Hi(G,A) of G with values in A in degree i is the left derived
functor of (−)G evaluated at A

Hi(G,A) := Li(A)G ≃ TorZ[G]
i (Z, A).

3.1.5. — From the description as derived functors, we have natural isomorphisms
H0(G,A) ≃ AG and H0(G,A) ≃ AG. We will treat these isomorphisms as equalities
in the remainder of this text. For every short exact sequence 0→ A′ → A→ A′′ → 0
of Z[G]-modules, we obtain a long exact sequence

0→ H0(G,A′)→ H0(G,A)→ H0(G,A′′)

→ H1(G,A′)→ H1(G,A)→ H1(G,A′′)

→ H2(G,A′)→ . . .

and these sequences are natural with respect to morphisms of short exact sequences.

3.1.6. Definition (Crossed homomorphisms). — A crossed homomorphism
φ : G→ A is a map satisfying

φ(gh) = φ(g) + g.φ(h) (3.1.1)

for every g, h ∈ G. The map φ is a principal crossed homomorphism if there exists
some a0 ∈ A such that φ(g) = g.a0 − a0 for all g ∈ G.

3.1.7. — A crossed homomorphism φ : G→ A satisfies in particular φ(1) = 0 and
φ(g−1) = −g−1.φ(g). When the group G is given by a presentation G = ⟨g1, . . . , gn |
r1, . . . , rm⟩, then a crossed homomorphism φ : G→ A can be specified on the generators
and extended to all of G by successive applications of (3.1.1) as long as these extensions
satisfy φ(ri) = 1 for all the relations ri.

3.1.8. Example. — In the proof of Proposition 5.2.7 we will use the Coxeter–Moore
presentation of the symmetric group. The symmetric group Sn is generated by the
transpositions τi := (i, i+ 1) for i = 1, . . . , n− 1 subject to the relations

– τ2
i = 1 for i = 1, . . . , n− 1,

– τiτj = τjτi for |i− j| > 1, and
– (τiτi+1)3 = 1 for i = 1, . . . , n− 2,

which realize symmetric groups as Coxeter groups, cf. [BB, Ex. 1.2.3].
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3.1.9. Bar resolution. — To facilitate computations, a more concrete description of
group cohomology using cocycles is convenient. By the description of group cohomology
using Ext groups, one can use a free resolution of Z as a Z[G]-module in computations.
Following [WeiIHA, §6.5], the unnormalized bar complex of G is the complex B• where
Bn is the free Z[G]-module generated by the symbols [g1, . . . , gn] for gi ∈ G, where
the empty symbol [ ] is valid, and d: Bn → Bn−1 is defined as

d([g1, . . . , gn]) = g1.[g2, . . . , gn]+
n−1∑
i=1

(−1)i[g1, . . . , gigi+1, . . . , gn]+(−1)n[g1, . . . , gn−1],

see (3.1.2)–(3.1.4) for concrete examples of this formula. Then, by augmenting the
bar complex by B0 = Z[G]→ Z with g 7→ 1, the complex B• → Z→ 0 becomes a free
resolution of the Z[G]-module Z, cf. [WeiIHA, Thm. 6.5.3]. So

Hi(G,A) ≃ Hi(HomZ[G](B•, A)) and Hi(G,A) ≃ Hi(B• ⊗Z[G] A)

by their description as Ext- and Tor-groups, respectively. In this viewpoint, we call
elements of Hi(G,A) cocycle classes; elements in the kernel of the differentials of
HomZ[G](B•, A) are called cocycles and elements in their image are called coboundaries.
For example, we have the following formulas of low degree differentials

d([h]) = h.[ ]− [ ], (3.1.2)
d([g, h]) = g.[h]− [gh] + [g], (3.1.3)

d([f, g, h]) = f.[g, h]− [fg, h] + [f, gh]− [f, g]. (3.1.4)

In particular, H1(G,A) consists of classes of crossed homomorphisms modulo
principal crossed homomorphisms. Hence, if G acts trivially on A, then

H1(G,A) ≃ Hom(G,A) ≃ Hom(Gab, A), (3.1.5)

and when G is finite,
H1(G,Z) ≃ Hom(G,Z) = 0

since Z is torsion free.
For group homology we obtain that H1(G,Z) is the free abelian group generated by

the symbols [g] for g ∈ G modulo the relations [h]− [gh] + [g] = 0 for g, h ∈ G. More
generally when G acts trivially on A, we have

H1(G,A) ≃ Gab ⊗Z A. (3.1.6)

3.1.10. Remark. — The descriptions of first group homology and cohomology with
trivial coefficients can also be proven without the bar complex by considering the
augmentation ideal and the universal coefficient theorem, cf. [WeiIHA, Thm. 6.1.12,
Cor. 6.4.6].

From a more abstract point of view, H2(G,A) consists of isomorphism classes of
group extensions of G by A such that the conjugation action of G on A coincides with
the given Z[G]-module structure on A, cf. [WeiIHA, Thm. 6.6.3]. The group H1(G,A)
consists of isomorphism classes of G-equivariant A-torsors, see §3.2 for details.
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3.1.11. Remark. — There is a homotopical approach to group cohomology which
motivates some of its good properties, like the universal coefficient theorem for
example. See [AM, Ch. II] and [WeiIHA, §6.10] for details. The classifying space BG
of the discrete group G is an Eilenberg–MacLane space K(G, 1), i.e. it is a connected
topological space with

π1(BG,pt) ≃ G
and πi(BG,pt) = 0 for i ̸= 1. It can be constructed as the quotient BG = EG/G of a
contractible space EG on which G acts freely. Note that a Z[G]-module A corresponds
to a local system A on BG since the latter are nothing else than Z[π1(BG,pt)]-modules.
There is a particular model of EG whose cellular chain complex Ccell

• (EG) is exactly
the bar complex of the group G, cf. [AM, Ex. II.3.4]. Thus the group cohomology
of G with values in A coincides with the singular cohomology with local coefficients

Hi
sing(BG,A) ≃ Hi(HomZ[π1(BG,pt)](Ccell

• (EG), A)) ≃ Hi(G,A).

3.1.12. Proposition (Universal coefficient theorem). — Let G be a group, let
A a Z[G]-module, and let B a Z-module. Assume that A is free as a Z-module, and
that i ≥ 0. Then there exists (non-canonically) split short exact sequences

0→ Ext1
Z(Hi−1(G,A), B)→ Hi(G,HomZ(A,B))→ HomZ(Hi(G,A), B)→ 0,

and
0→ Hi(G,A)⊗Z B → Hi(G,A⊗Z B)→ Tor1

Z(Hi−1(G,A), B)→ 0.
Moreover the sequences are functorial with respect to A, B, and G.

Proof. — Let P• → Z be a resolution of Z by free Z[G]-modules. Then all Pj ⊗Z[G] A

are free Z-modules since A is free over Z. Recall that submodules of free Z-modules
are themselves free. Now [WeiIHA, Thm. 3.6.5] provides the split short exact sequence

0→ Ext1
Z(Hi−1(P• ⊗Z[G] A), B)→ Hi(HomZ(P• ⊗Z[G] A,B))

→ HomZ(Hi(P• ⊗Z[G] A), B)→ 0.

Note that for the outer terms

Hi−1(P• ⊗Z[G] A) ≃ TorZi−1(Z, A) ≃ Hi−1(G,A),

and for the middle term

HomZ(P• ⊗Z[G] A,B) ≃ HomZ[G](P•,HomZ(A,B))

by tensor-hom adjunction. The cohomology of the latter is group cohomology by its
description via Ext groups.

The proof of the second claimed short exact sequence follows the same strategy,
but using [WeiIHA, Thm. 3.6.1, Thm. 3.6.2] this time.

Regarding functoriality of the sequences. Let f : H → G be a group homomorphism,
which induces a homomorphism f : Z[H] → Z[G]. Take a free resolution P• → Z
of Z[G]-modules and a free resolution Q• → Z of Z[H]-modules. Then f∗P• → Z
is still a resolution of Z[H]-modules, since f∗ is exact. Since the Qi are free and in
particular projective, the map id: Z→ Z lifts to a morphism Q• → f∗P• of complexes



3.1. Abelian group cohomology 57

of Z[H]-modules. This induces a morphism of complexes

Q• ⊗Z[H] A→ P• ⊗Z[G] A.

Finally, the constructions in [WeiIHA, §3.6] are functorial, essentially since they
arise through long exact cohomology sequences associated to certain short exact
sequences.

3.1.13. Remark. — We can factor the map Ext1
Z(H1(G,Z), B)→ H2(G,B) in the

universal coefficient theorem as

Ext1
Z(H1(G,Z), B) ≃ Ext1

Z(Gab, B) α−→ H2(Gab, B) β−→ H2(G,B)

and this is compatible with viewing elements of these groups as group extensions, more
precisely, α maps an extension of the abelian groups to the very same extensions viewed
as a central extension, and β pulls a central extension back along the abelianization
morphism G→ Gab, cf. [Bey82, Thm. 1.8].

3.1.14. Restricted representations. — Let f : H → G be a homomorphism of
groups, and let A be a Z[G]-module. Define the Z[H]-module as

Resf (A) := A

where the group H acts via f through the action of G on A. This construction becomes
a functor

Resf : Mod(Z[G])→Mod(Z[H])
by sending a homomorphism of Z[G]-modules to itself. It is clear that Resf is exact,
since it does not modify underlying abelian groups in any way. In the case that
f : H ↪→ G is a subgroup, we call

ResGH := Resf
the restriction functor.

3.1.15. — By construction of group cohomology as a derived functor, it is clear
that H•(G,A) is functorial in A ∈Mod(Z[G]). For a homomorphism φ : A → B of
Z[G]-modules we write φ∗ : Hn(G,A)→ Hn(G,B) for the induced functors.

Let f : H → G be a homomorphism of groups, and let A be a Z[G]-module. We have
a natural inclusion AG ↪→ AH = Resf (A)H which extends uniquely to a morphism of
δ-functors

resf : H•(G,−)→ H•(H,Resf (−)),
since the left hand side is a universal δ-functor by construction, and the right hand side
is similarly a δ-functor in view of the exactness of Resf . In the case that f : H ↪→ G

is a subgroup, we write

resGH : H•(G,−)→ H•(H,ResGH(−)).

In more down-to-earth terms, representing an element of Hi(G,A) by a cocycle
φ : G×i → A, we obtain resGH([φ]) ∈ Hi(H,ResGH(A)) by composing φ with the map
H×i → G×i induced by f .
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3.1.16. Induced representations. — Let H ⊂ G be a subgroup, so Z[G] becomes a
(left and right) Z[H]-module, and let B be a Z[H]-module. The coinduced Z[G]-module
is defined as

CoIndGH(B) := HomZ[H](Z[G], B)
≃ {ϕ : G→ B | ϕ(hg) = h.ϕ(g) for g ∈ G, h ∈ H}

with G-action afforded by g.ϕ := (g′ 7→ ϕ(g′g)). The induced Z[G]-module is defined
as

IndGH(B) := Z[G]⊗Z[H] B.

The canonical projection

π : CoIndGH(B)→ B, ϕ 7→ ϕ(1)

is a morphism of Z[H]-modules. Then the functor IndGH(−) is left adjoint to the
restriction functor ResGH , while CoIndGH(−) is its right adjoint, cf. Frobenius reciprocity
[BroCG, III.§3, III.§5].

If H ⊂ G is a subgroup of finite index, we have an isomorphism of functors

IndGH(−) ≃ CoIndGH(−), (3.1.7)

cf. [WeiIHA, Lem. 6.3.4]. For this reason we won’t make in this case a distinction
in our terminology regarding “induced” and “coinduced” and just use the notation
IndGH(B) for both.

The following perspective on induced representations is useful when considering a
Z[H]-module with trivial action, and is applied later in the proof of Proposition 4.2.4.

3.1.17. — Assume H ⊂ G is a subgroup of finite index, and let g1, . . . , gn be a set
of right coset representatives for H\G. Then we have an isomorphism

CoIndGH(B) ≃ Map(H\G,B),

sending ϕ to the map of sets Hgi 7→ ϕ(gi). Its inverse is given by extending such
a map of sets via the formula ϕ(hg) = h.ϕ(g). The left G-action on Map(H\G,B)
becomes

(g.ϕ)(Hgi) := h.ϕ(Hgj),
when gig = hgj for g ∈ G and h ∈ H.

Note that from this point of view, an isomorphism Z[G]⊗Z[H] B
∼−→ Map(H\G,B)

as in (3.1.7) is given by mapping g−1
i h ⊗ b 7→ h.b · δHgi

, where δHgi
denotes the

Kronecker symbol.
Assume now that B arises as the restriction of a Z[G]-module with trivial action.

Note that then the isomorphism above is independent of the choice of coset represen-
tatives {gi}. The G-action on Map(H\G,B) above becomes just the usual action on
the set of maps between a right and a left G-set. Concretely, for ϕ ∈ Map(H\G,B)
and g ∈ G this is given by

g.ϕ = x 7→ g.ϕ(x.g)
= x 7→ ϕ(x.g).
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3.1.18. Proposition (Shapiro’s Lemma). — Let G be a group with some sub-
group H ⊂ G, and let B be a Z[H]-module. Then, for every n ≥ 0, the canonical
projection π induces an isomorphism

shn : Hn(G,CoIndGH(B)) ∼−→ Hn(H,B). (3.1.8)

Proof. — See [NSW, Prop. 1.6.4] or [WeiIHA, Lem. 6.3.2]. We provide a sketch using
δ-functors. It is straightforward to check that π∗ ◦ resGH is an isomorphism in degree 0.
We know that the right hand side of (3.1.8) is a universal δ-functor, and the left hand
side is a δ-functor since CoIndGH is exact by the freeness of Z[G] as a Z[H]-module
(with basis given by a set of coset representatives). The left hand side is a universal
δ-functor, since it is erasable for n ≥ 1. Indeed, coinduction preserves injective objects,
since it is right adjoint to the restriction functor which preserves monomorphisms. So
the morphism

shn := π∗ ◦ resGH : Hn(G,CoIndGH(B)) ∼−→ Hn(H,B)

becomes an isomorphism as it is one in degree 0.

3.1.19. Situation. — From now on we assume that G is a group and H ⊂ G is
a subgroup of finite index. In particular we won’t make a distinction between the
induction and coinduction functors any more.

3.1.20. Definition. — Let H ⊂ G be a subgroup of finite index, and let A be a
Z[G]-module. Define the following two homomorphisms of Z[G]-modules:

ι : A→ IndGH(ResGH(A)) x 7→ (g 7→ g.x) (3.1.9)

ν : IndGH(ResGH(A))→ A ϕ 7→
∑

[g]∈G/H

g.ϕ(g−1). (3.1.10)

3.1.21. Remark. — The significance of the maps in Definition 3.1.20 is that ι is the
unit of the restriction-coinduction adjunction, and ν is the counit of the induction-
restriction adjunction, cf. [NSW, p. 63]. Also, the map ι is injective and ν is surjective,
in accord with the faithfulness of the restriction functor.

3.1.22. Corestriction. — Besides the contravariant functoriality of H•(G,A) in G
given by restriction, group cohomology is also covariantly functorial with respect to
finite index subgroups H ⊂ G via corestriction maps (also called transfer maps)

corGH : H•(H,ResGH(A))→ H•(G,A).

In degree 0, the corestriction map is the norm map

corGH : AH → AG, a 7→
∑

[g]∈G/H

g.a. (3.1.11)

This norm map extends then uniquely to a morphisms of universal δ-functors, cf.
Proposition 3.1.23.
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3.1.23. Proposition. — Let H ⊂ G be a subgroup which is of finite index or normal.
Then the functors Hn(H,ResGH(−)) : Mod(Z[G]) → Mod(Z) form a universal δ-
functor.

Proof. — It is clear that H•(H,ResGH(−)) is a δ-functor, since ResGH(−) is an exact
functor. Regarding universality, we check that that it is an erasable functor, i.e. for
every Z[G]-module A, there exists an injection A ↪→ Ã of Z[G]-modules such that
H≥1(H,ResGH(Ã)) = 0. By Definition 3.1.20 and Remark 3.1.21 we have an injection

A ↪→ IndG0 (ResG0 (A)) =: Ã.

Let us abbreviate A0 := ResG0 (A). By induction on the index (G : H), we check that

H≥1(H,ResGH(Ã)) = 0.

The case (G : H) = 1 is trivial since then H = G, and ResGH = id and by Shapiro’s
lemma (Proposition 3.1.18)

H≥1(G, IndG0 (A0)) ≃ H≥1(0, A0) = 0.

Otherwise we use IndG0 (A0) ≃ IndGH(IndH0 (A0)), abbreviate Ã′ := IndG0 (A0), and use
Mackey’s formula

ResGH(IndGH(Ã′)) ≃
⊕

[σ]∈H\G/H

IndHH∩σHσ−1(σ ResHH∩σ−1Hσ(Ã′)),

cf. [BroCG, Prop. III.5.6.b]. Now we get for each of the direct summands that

H≥1(H, IndHH∩σHσ−1(σ ResHH∩σ−1Hσ(Ã′)))

≃H≥1(H ∩ σHσ−1, σ ResHH∩σ−1Hσ(Ã′))

≃H≥1(σ−1Hσ ∩H,ResHH∩σ−1Hσ(Ã′)),

where the first isomorphism is Shapiro’s lemma (Proposition 3.1.18), and the second
isomorphism comes from conjugation via H ∩ σHσ−1 ∼−→ σ−1Hσ ∩H, h 7→ σ−1hσ.
The latter cohomology group vanishes by induction hypothesis. Indeed, by the index
of an intersection formula, cf. [CohAlg, §3.3, Exer. 9], we have(

G : σ−1Hσ ∩H
)
≤ (G : H)

(
G : σ−1Hσ

)
,

which implies (
H : σ−1Hσ

)
≤
(
G : σ−1Hσ

)
= (G : H)

and we have equality if and only if G = σ−1HσH. The latter is equivalent to
G = HσH and would mean that G = H and there is only one double coset.

In the case that H ⊂ G is normal, Mackey’s formula simplifies so that an application
of Shapiro’s lemma suffices to finish the proof without using induction.

The next proposition could be used to give an alternative definition of corestriction,
but, for the sake of robustness, we will not take this shortcut.
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3.1.24. Proposition. — Let G be a finite group with some subgroup H ⊂ G, and let
A be a Z[G]-module. For n ≥ 0 we have commutative diagrams

Hn(G,A) Hn(G, IndGH(ResGH(A))) Hn(H,ResGH(A)),ι∗

resG
H

sh

and

Hn(H,ResGH(A)) Hn(G, IndGH(ResGH(A))) Hn(G,A).sh−1

corG
H

ν∗

Proof. — See [NSW, Prop. 1.6.5] for a concrete proof on the level of cocycles. We
provide a proof using δ-functors. First we check the identities on degree 0. The Shapiro
isomorphism sh is just the map

π : IndGH(ResGH(A))G → ResGH(A)H , ϕ 7→ ϕ(1).

The push-forward ι∗ becomes

ι : AG → IndGH(ResGH(A))G, x 7→ (g 7→ g.x).

Their composition is the inclusion NG ↪→ NH , which is exactly the restriction map.
Next, recall that the corestriction map in degree 0 is the norm map (3.1.11), and

sh(ϕ) = ϕ(1) as above. For ϕ ∈ H0(G, IndGH(ResGH(A))) we have by definition

ν(ϕ) =
∑

[g]∈G/H

g.ϕ(g−1) =
∑

[g]∈G/H

g.ϕ(1),

where we used that for every g ∈ G we have g.ϕ = ϕ, which implies ϕ(g) = ϕ(1). In
conclusion, the maps agree, as desired.

We conclude using the fact that resGH and sh ◦ι∗, as well as ν∗ ◦ sh−1 and corGH are
morphisms of universal δ-functors.

3.1.25. Proposition. — Let H ⊂ G be subgroup of finite index, and let n ≥ 0. Then
we have for every Z[G]-module A the identity of endomorphisms of Hn(G,A)

corGH ◦ resGH = (G : H) · id .

Proof. — See [WeiIHA, Lem. 6.7.17]. It is enough to check the identity in degree 0,
since we are comparing morphisms of universal δ-functors. For n = 0 and a ∈ AG we
have by definition that

(corGH ◦ resGH)(a) =
∑

[g]∈G/H

g.a =
∑

[g]∈G/H

a = (G : H) a.

3.1.26. Remark. — Proposition 3.1.25 instantiated with a finite group G and
H = 0 implies that that multiplication by the order #G of G is the zero map on
the cohomology groups Hn(G,A) for n ≥ 1. Also note that whenever A is finitely
generated as an abelian group, then all Hn(G,A) are finitely generated as well, which
is clear from the description in ¶3.1.9. In particular, the higher cohomology groups,
n ≥ 1, are finite abelian groups in this case.
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3.1.27. Definition (Schur multiplier). — The Schur multiplier of a group G is
the group homology group H2(G,Z), where G acts trivially on Z.

3.1.28. Notation. — We allow, by abuse of notation, to refer to H2(G,k×) also by
“Schur multiplier” when k is an algebraically closed field of characteristic zero. This is
somewhat justified by Proposition 3.1.29.(ii) below.

3.1.29. Proposition. — Assume that G is a finite group.
(i) Then H2(G,Z) is a finite abelian group, consisting of #G-torsion elements.
(ii) Let k be an algebraically closed field of characteristic zero. Considering k×

endowed with trivial G-action, we have

Hn(G,k×) ≃ HomZ(Hn(G,Z),k×).

In particular, the Schur multiplier H2(G,Z) and H2(G,k×) are isomorphic as
abstract groups.

Proof. — (i) Since Z is finitely generated, Hn(G,Z) is a finitely generated abelian
group as well. For n ≥ 1, Remark 3.1.26 tells us that Hn(G,Z) is finite abelian
group which is annihilated by multiplication by #G. The universal coefficient theorem
(Proposition 3.1.12) for group cohomology, instantiated with A = Z and B = Z, implies
that HomZ(Hn(G,Z),Z) is also a finite group, hence necessarily zero. We conclude
that Hn(G,Z) is finite since its rank must be zero. The second part of the claim
follows from (ii) since Hn(G,k×) consists of #G-torsion elements by Remark 3.1.26.

(ii) By the universal coefficient theorem (Proposition 3.1.12) we have a short exact
sequence

0→ Ext1
Z(Hn−1(G,Z),k×)→ Hn(G,k×)→ HomZ(Hn(G,Z),k×)→ 0.

We have H0(G,Z) = Z, and in the proof of (i) we saw that Hn−1(G,Z) is a finite
abelian group for n ≥ 2, so it is isomorphic to a direct sum of finite cyclic groups.
Now, use that Ext1

Z(Z/mZ,k×) ≃ k×/(k×)m = 1 as well as Ext1
Z(Z,k×) = 1.

For the second claim in (ii), write again H2(G,Z) as a direct sum of finite cyclic
groups. Now note that Z/mZ is isomorphic to the group of roots of unity µm(k) ≃
HomZ(Z/mZ,k×).

3.1.30. Example. — Let us list a few examples of Schur multipliers, where the one
of the symmetric group will be of most importance to us later; its calculation goes
back to Schur [Sch11].

Group G H2(G,Z) Condition Reference

cyclic group Z/nZ 0 n ∈ N [KarSN, Thm. 2.1.1]

symmetric group Sn 0 n ≤ 3 [KarSN, Thm. 2.12.3]
Z/2Z n ≥ 4

alternating group An 0 n ≤ 3 [KarSN, Thm. 2.12.5]
Z/6Z n = 6, 7
Z/2Z n ≥ 4, n ̸= 6, 7
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Table 1. Group cohomology of symmetric groups with integer coefficients.

n H0(Sn,Z) H1(Sn,Z) H2(Sn,Z) H3(Sn,Z) H4(Sn,Z) H5(Sn,Z) H6(Sn,Z)

1 Z 0 0 0 0 0 0
2 Z 0 F2 0 F2 0 F⊕1

2

3 Z 0 F2 0 F⊕1
2 ⊕ Z/3Z 0 F⊕1

2

4 Z 0 F2 F2 F⊕1
2 ⊕ Z/12Z F⊕1

2 F⊕3
2

5 Z 0 F2 F2 F⊕1
2 ⊕ Z/12Z F⊕1

2 F⊕3
2

6 Z 0 F2 F2 F⊕2
2 ⊕ Z/12Z F⊕2

2 F⊕5
2

7 Z 0 F2 F2 F⊕2
2 ⊕ Z/12Z F⊕2

2 F⊕5
2

8 Z 0 F2 F2 F⊕2
2 ⊕ Z/12Z F⊕3

2 F⊕6
2

9 Z 0 F2 F2 F⊕2
2 ⊕ Z/12Z F⊕3

2 F⊕6
2

10 Z 0 F2 F2 F⊕2
2 ⊕ Z/12Z F⊕3

2 F⊕7
2

11 Z 0 F2 F2 F⊕2
2 ⊕ Z/12Z F⊕3

2 F⊕7
2

12 Z 0 F2 F2 F⊕2
2 ⊕ Z/12Z F⊕3

2 F⊕7
2

3.1.31. — Let us summarize the group cohomology of symmetric groups briefly.
First, let us get out of the way that by (3.1.6)

H1(Sn,Z) ≃ Sab
n = Sn/An ≃ Z/2Z

for n ≥ 2; and for n ≥ 3 the center is

Z(Sn) = {id}.

See Table 1 for the low degree group cohomology of the symmetric group Sn with n ≤ 12,
which we have produced using the computer algebra system GAP [GAP] with the
command GroupCohomology(SymmetricGroup(n),k); of the package hap [GAPhap].
For readability of the table we have used the notation F2 for the group Z/2Z.

The table suggests a stability result. Indeed, we have the following result (Theo-
rem 3.1.32) due to Nakaoka. We have shaded the unstable range, according to this
proposition, in gray. With integer coefficients, the table suggest a better unstabil-
ity range, shaded in darker gray, but for example H2(S4,Z/2Z) ≃ (Z/2Z)⊕2 is not
isomorphic to H2(S3,Z/2Z) ≃ Z/2Z.

3.1.32. Theorem (Nakaoka). — Let A be an abelian group endowed with trivial
Sn-action. Then the restriction map

resSn

Sn−1
: Hk(Sn, A)→ Hk(Sn−1,ResSn

Sn−1
(A))

is an isomorphism for k < n/2; it is always surjective.

Proof. — See [Nak60, Cor. 6.7, Thm. 5.8]. The lecture notes [Kup21] provide an
exposition of Quillen’s strategy for the result, cf. [Qui74; RW17; SW20].
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3.2. Non-abelian group cohomology and equivariant torsors

We will consider in Part II group cohomology with values in a not-necessarily
abelian group. Let us briefly collect in this section the results from non-abelian
group cohomology which we will need later. We use [BerIGH, Ch. II] as a reference;
alternatively, see [BS64, §1], [SerGC, §I.5] or [GirCNA, §III.3]. Besides other things,
we discuss the notion of equivariant pseudo-torsors, which is not new but appears to
be not very well known among algebraic geometers. Since we rely crucially on this
notion later on, we spell out some ultimately elementary computations in detail.

3.2.1. Situation. — Let G be a group, and let A be a G-group, i.e. a group, written
multiplicatively when it is not assumed to be abelian, endowed with a left action by G
via group homomorphisms.

3.2.2. Non-abelian group cohomology sets. — As before, define group coho-
mology in degree 0 as the subgroup

H0(G,A) := AG

of A of G-invariant elements. The first non-abelian group cohomology set H1(G,A)
consists of equivalence classes of 1-cocycles. Recall that a 1-cocycle is nothing else
than a crossed homomorphism φ : G→ A, i.e. a map satisfying

φ(gh) = φ(g)(g.φ(h))

for g, h ∈ G. The trivial 1-cocycle is the constant crossed homomorphism φtriv : g 7→ 1.
The group A acts from the left on the set of crossed homomorphism via

a.φ := g 7→ aφ(g)(g.a−1),

and we define
H1(G,A) := Homcrossed(G,A)/A,

which is a pointed set with base-point φtriv.

3.2.3. — Given a morphism f : A→ B of G-groups, i.e. a G-equivariant homomor-
phism, we obtain by restriction an induced map f∗ : AG → BG, and by postcomposition
an induced map Homcrossed(G,A) → Homcrossed(G,B) which descends to a pointed
map f∗ : H1(G,A)→ H1(G,B). Thus we have functors

H0(G,−) : GrpBG → Grp and H1(G,−) : GrpBG → Set∗,

where GrpBG is the category of G-groups together with G-equivariant group homo-
morphism as morphisms, written here as a functor category.

3.2.4. Proposition. — Let G be a group and let 1→ A
i−→ B

p−→ C → 1 be a short
exact sequence of G-groups. Then there exists a connecting map δ : CG → H1(G,A)
such that

0 H0(G,A) H0(G,B) H0(G,C)

H1(G,A) H1(G,B) H1(G,C)

i∗ p∗

δ i∗ p∗
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becomes an exact sequence of pointed sets (i.e. kernels coincide with images) which is
functorial with respect to morphism of short exact sequences of G-groups.

Proof. — See [BerIGH, §§II.4.1–II.4.2] for details. We only explain the definition of
the connecting map

δ : CG → H1(G,A).
Let c ∈ CG and pick some preimage b ∈ p−1({c}). Then p(b−1(g.b)) = 1 since c is
G-invariant, so the element b−1(g.b) lies in the image of i∗. The map

δ(b) := g 7→ i−1
∗ (b−1 · (g.b))

is a crossed homomorphism and its class δ(c) := [δ(b)] ∈ H1(G,A) is independent of
the choice of the preimage b. Note that δ is a pointed map since we can pick for c = 1
the preimage b = 1.

3.2.5. Remark. — Comparing the constructions from ¶3.2.2 with those of ¶3.1.9, we
see that non-abelian group cohomology recovers abelian group cohomology whenever
A is an abelian group.

3.2.6. — In the case that A is an abelian group, we know that H1(G,A) is also an
abelian group, but the connecting map δ does not need to be a group homomorphism.

We will explain in Proposition 3.2.7 that instead δ will be a crossed homomorphism
for the following action: The group C acts from the right on A via inner automorphisms
of B. That is, for c ∈ C and a ∈ A, choose b ∈ p−1(c) and define

a.c := b−1ab := i−1(b−1i(a)b).

Using that A is abelian, one checks that this is independent of the choice of preimage b.
Since for g ∈ G one has g.(a.c) = (g.a).(g.c), this right action is G-equivariant
as long as c ∈ H0(G,C) = CG. So, by functoriality, it induces a right action of
H0(G,C) on H1(G,A). Concretely, c ∈ H0(G,C) acts on a class [φ] given by a crossed
homomorphism φ via

[φ].c = [g 7→ φ(g).c].

3.2.7. Proposition. — Let G be a group and let 0→ A→ B → C → 1 be a short
exact sequence of G-groups where we assume that A is an abelian group. Then the
connecting map δ : H0(G,C)→ H1(G,A) is a crossed homomorphism, i.e.

δ(cc′) = δ(c).c′ + δ(c′)

for c, c′ ∈ H0(G,C).

Proof. — See [GirCNA, Prop. III.3.4.1] for example. Recall that the map δ sends an
element c ∈ H0(G,C) to the class represented by the crossed homomorphism

φ : g 7→ i−1(b−1 · (g.b)),

for some choice of b ∈ p−1(c).
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Now pick some b′ ∈ p−1(c′) and set φ′ := δ(b′), then for any g ∈ G

(bb′)−1 · (g.(bb′)) = (b′)−1b−1(g.b)(g.b′)

= (b′)−1i(φ(g))(g.b′)

= i(φ(g).c′)(b′)−1(g.b′)
= i(φ(g).c′) · i(φ′(g))

Writing A additively, this means δ(cc′) = [φ].c′ + [φ′], as desired.

3.2.8. Remark. — In particular, when 0→ A→ B → C → 1 is a central extension,
i.e. A is contained in the center of B, then the connecting map δ is a group homomor-
phism. Furthermore, the 6-term sequence in Proposition 3.2.4 extends to a 7th term
through a pointed map H1(G,C)→ H2(G,A), cf. [BerIGH, §II.4.3].

Next we will consider torsors which are equipped with an additional action by a
group G and describe their connection with non-abelian group cohomology sets. See
for reference [NSW, §I.2], [BS64, §1] and [SerGC, §I.5]. Let A still be a G-group.

3.2.9. Definition. — A G-equivariant A-pseudo-torsor is a set T equipped with a
left action by G and a free transitive right action by A, which are compatible in the
sense that

g.(t.a) = (g.t).(g.a)
for every g ∈ G, a ∈ A, t ∈ T . Provided that T is non-empty, we call it a G-equivariant
A-torsor.

3.2.10. Definition. — A morphism of G-equivariant A-pseudo-torsors is a map of
sets which is G- and A-equivariant. More generally, when f : A→ A′ is a homomor-
phism of G-groups, then a map f̃ : T → T ′ from a G-equivariant A-pseudo-torsor to a
G-equivariant A′-pseudo-torsor is called equivariant (with respect to f) provided that
it is G-equivariant and

f̃(t.a) = f̃(t).f(a)
for every t ∈ T and a ∈ A.

3.2.11. Notation. — Whenever G is the trivial group, we drop “G-equivariant”
from the terminology.

3.2.12. Remark. — Consider the category BG with a single object pt and
MorBG(pt,pt) := G. Then the topos of presheaves PSh(BG) on BG is just the
category SetBG of sets equipped with a G-action. Now a G-group A is nothing
else than a group object in PSh(BG), and a G-equivariant A-pseudo-torsor is a
A-pseudo-torsor object in PSh(BG), i.e. an object T ∈ PSh(BG) together with an
action morphism act : T ×A→ T satisfying the action condition that the squares

T × T ×A T ×A T ×A T

T ×A T, T

(act,id)

(id,mult) act

act

act
id

(id,e)
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commute, and the pseudo-torsor condition that

(pr1, act) : T ×A ∼−→ T × T

is an isomorphism.

3.2.13. Example. — Let 1 → A → B
p−→ C → 1 be a short exact sequence of

G-groups. Then the fibers p−1({c}) for c ∈ CG are typical examples of G-equivariant
A-torsors. Indeed, the left G-action on B restricts to the fiber since p is equivariant
and c is fixed by G. The right A-action is given by multiplication inside B, and both
these actions are compatible since G acts via group homomorphisms.

3.2.14. Proposition. — Let T be a G-equivariant A-pseudo-torsor, then the fixed-
point set TG is an AG-pseudo-torsor.

Proof. — The right action of AG on TG is inherited from the action of A on T . It is
well-defined, since for t ∈ TG and a ∈ AG, we have

g.(t.a) = (g.t).(g.a) = t.a

for every g ∈ G. The action is still free and transitive, since for every t, t′ ∈ TG there
exists a unique a ∈ A such that t′ = t.a, and we can check that a ∈ AG. Indeed, for
every g ∈ G we have

t.a = t′ = g.t′ = g.(t.a) = (g.t).(g.a) = t.(g.a),

and thus g.a = a by uniqueness of a.

3.2.15. Proposition. — Let G be a group and A be a G-group.
(i) We have a canonical bijection between H1(G,A) and the set of isomorphism

classes of G-equivariant A-torsors:

H1(G,A)↔ {G-equivariant A-torsors}/≃
[T ]← [ T

(ii) A G-equivariant A-torsor T has a G-fixed point if and only if [T ] = 0.

We will spell out and check the details of the constructions giving the bijection,
since the proposition plays an important role in the proof of Theorem 6.1.5, and we
want to lay bare that the proof is essentially elementary.

Proof. — (i) See [NSW, Prop. 1.2.3] or [BS64, Prop. 1.8] for reference. Let T be a
G-equivariant A-torsor, and pick some element t0 ∈ T . For each g ∈ G there is a
unique ag ∈ A such that

g.t0 = t0.ag. (3.2.1)
Then we calculate

t0.agh = (gh).t0 = g.(t0.ah) = (g.t0).(g.ah) = (t0.ag).(g.ah) = t0.(ag.(g.ah),

which by uniqueness of agh yields agh = ag.(g.ah). So g 7→ ag provides a 1-cocycle
which is taken to represent the cohomology class [T ]. Any other choice of t0, say t′0,
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yields an equivalent 1-cocycle. Indeed, there is a unique a ∈ A such that t′0 = t0.a, so

g.t′0 = g.(t0.a) = (g.t0).(g.a) = (t0.ag).(g.a) = t0.(ag(g.a)) = t′0.a
−1.(ag(g.a))

which yields a′
g = a−1ag(g.a) as desired, showing [g 7→ ag] = [g 7→ a′

g].
The other way around, let [g 7→ ag] ∈ H1(G,A). Define T as the set A with the

right A-action given by multiplication, which is clearly free and transitive, and let
g ∈ G act on t = a ∈ T as

g.t := ag · (g.a). (3.2.2)
This is an action since, using a1 = 1, we have 1.t = 1 · (1.a) = a, and

(gh).t = agh ·((gh).a) = ag ·(g.ah)·(gh).a = ag ·(g.(ah ·(h.a))) = g.(ah ·(h.a)) = g.(h.t).

The required compatibility of the actions is satisfied since for t = a ∈ T

g.(t.b) = ag · (g.(ab)) = ag · (g.a) · (g.b) = (g.t).(g.b).

Any 1-cocycle g 7→ a′
g which is equivalent to g 7→ ag, i.e. there exists a ∈ A such that

a′
g = a−1ag(g.a), yields a torsor T ′ that is isomorphic to T via the map t′ 7→ a · t′.

The latter map is clearly A-equivariant and it is G-equivariant since for t′ = b ∈ T ′

g.t′ = a′
g · (g.b) = a−1 · ag · (g.a) · (g.b) = a−1 · ag · (g.(ab)) = a−1 · g.(a · t′).

These two constructions described above are inverse to each other: Starting with a
cocycle g 7→ ag yields a torsor T with underlying set A. Picking t0 = 1 ∈ A recovers
the cocycle g 7→ ag, since by construction

g.t0 = ag · (g.1) = ag = t0 · ag.

On the other hand, starting with a torsor T and an element t0 ∈ T , we get an
isomorphism A ∼−→ T of A-torsors, mapping a 7→ t0.a. This map is G-equivariant for
the actions constructed above, since

g.(t0.a) = (g.t0).(g.a) = (t0.ag).(g.a) = t0.(ag · (g.a)).

(ii) Regarding fixed points: Let t0 ∈ T . Then by (3.2.1) the cohomology class [T ]
is represented by the 1-cocycle g 7→ ag where g.t0 = t0.ag. If t0 ∈ TG, then we have
g.t0 = t0, which implies ag = 1 for every g ∈ G, i.e. g 7→ ag is the trivial 1-cocycle.

Conversely, assume [T ] = 0, i.e. g 7→ ag is equivalent to the trivial 1-cocycle. This
means that there exists an a ∈ A such that ag = a · (g.a)−1 for every g ∈ G. Finally,
the element t′0 := t0.a is a G-fixed point, since

g.t′0 = g.(t0.a) = (g.t0).(g.a) = (t0.ag).(g.a) = t0.(a · (g.a)−1 · (g.a)) = t0.a = t′0.

3.2.16. Remark. — Under the identification of Proposition 3.2.15 the connecting
map δ : H0(G,C)→ H1(G,A) of Proposition 3.2.4 maps a fixed point c ∈ CG to the
G-equivariant A-torsor p−1({c}) of Example 3.2.13, cf. [NSW, p. 17].

3.2.17. Proposition. — Let f : A→ A′ be a homomorphism of G-groups, let T be
a G-equivariant A-torsor and let T ′ be a G-equivariant A′-torsor. Then there exists
an equivariant map f̃ : T → T ′ as in Definition 3.2.10 if and only if f∗ : H1(G,A)→
H1(G,A′) maps [T ] to [T ′].
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Proof. — “⇒” Assume that there exists an equivariant map f̃ : T → T ′. Pick some
element t0 ∈ T , and define t′0 := f̃(t0) ∈ T ′. Then (3.2.1) says that [T ] is represented
by the cocycle g 7→ ag where g.t0 = t0.ag. Now [T ′] is represented by the cocycle
g 7→ f(ag), since

g.t′0 = g.f̃(t0) = f̃(g.t0) = f̃(t0.ag) = f̃(t0).f(ag) = t′0.f(ag).

This is exactly a cocycle representing f∗([g 7→ ag]), as desired.
“⇐” Assume that f∗[T ] = [T ′]. Pick some t0 ∈ T , and represent [T ] by the

cocycle g 7→ ag with g.t0 = t0.ag. Since [T ′] is represented by the cocycle g 7→ f(ag),
there exists some t′0 satisfying g.t′0 = t′0.f(ag) for every g ∈ G. Now define the map

f̃ : T → T ′, t0.a 7→ t′0.f(a)

for a ∈ A. By construction, f̃ is equivariant relative to f : A → A′. To prove G-
equivariance, let g ∈ G and t ∈ T . Then there exists a ∈ A such that t = t0.a, and we
calculate

f̃(g.t) = f̃(g.(t0.a)) = f̃((g.t0).(g.a)) = f̃((t0.ag).(g.a)) = t′0.f(ag).f(g.a)

= (g.t′0).f(g.a) = (g.t′0).(g.f(a)) = g.(t′0.f(a)) = g.f̃(t0.a) = g.f̃(t),

as desired.
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CHAPTER 4

The integral standard representation of Sn

4.1. The integral standard representation of Sn and its dual

In this section we discuss the standard representation of the symmetric group with
integral coefficients, as well as its dual representation. This serves as preliminaries for
calculations in later sections. We are not aware of a reference which focuses on these
two integral representations as we do.

4.1.1. Definition (Standard representation). — Define the abelian group Γn as
the kernel of the summation map Σ : Zn → Z,

Γn := ker(Σ : Zn → Z).

The symmetric group Sn acts on Zn by permuting the factors; explicitly we have
σ.ei := eσ(i), where ei denotes the i-th standard basis vector. This can also be
written as σ.(a1, . . . , an) = (aσ−1(1), . . . , aσ−1(n)). Since the morphism Σ is equivariant
when we endow Z with the trivial action, this induces an action of Sn on Γn. The
Z[Sn]-module Γn is called the standard representation of Sn.

4.1.2. — Note that, there is an isomorphism of abelian groups Zn−1 ∼−→ Γn given by

(a1, . . . , an−1) 7→ (a1, . . . , an−1,−a1 − · · · − an−1).

So, when A is some abelian group, we get a short exact sequence

0→ A⊗Z Γn → A⊗Z Zn Σ−→ A⊗Z Z→ 0. (4.1.1)

This identifies A ⊗Z Γn with the kernel of the morphism Σ : A×n → A, when we
identify A⊗ZZn with A×n. Note that the latter identification is clearly Sn-equivariant,
so we get an isomorphism of Z[Sn]-modules.

4.1.3. Definition (Dual standard representation). — Define the abelian group

Γ∨
n := coker(∆ : Z→ Zn),

where ∆ is the diagonal map. Then, similar to above, Γ∨
n becomes a Z[Sn]-module.
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4.1.4. — Analogous to ¶4.1.2, we have an isomorphism of abelian groups Zn−1 ∼−→ Γ∨

given by
(a1, . . . , an−1) 7→ [(a1, . . . , an−1, 0)].

So, when A is some abelian group, we get a short exact sequence of Z[Sn]-modules

0→ A⊗Z Z ∆−→ A⊗Z Zn → A⊗ Γ∨
n → 0.

4.1.5. — The notation Γ∨
n is justified since ∆ : Z → Zn is the dual homomor-

phism to Σ : Zn → Z under the identifications HomZ(Z,Z) ∼−→ Z, f 7→ f(1) and
HomZ(Zn,Z) ∼−→ Zn, f 7→ (f(ei))i. So we can identify coker(∆ : Z → Zn) with the
dual abelian group HomZ(Γn,Z). That is, we have an isomorphism of short exact
sequences

0 Z∨ (Zn)∨ HomZ(Γn,Z) 0

0 Z Zn Γ∨
n 0

Σ∨

∼ ∼ ∼

∆

Again, this isomorphism is Sn-equivariant. Indeed, when Sn acts on a abelian group A,
then Sn acts on HomZ(A,Z) via σ.f = x 7→ f(σ−1.x), where we have endowed Z with
the trivial Sn-action. Now the equalities

σ.ei := ((σ.e∨
i )(ej))j = (e∨

i (σ−1.ej))j = (e∨
i (eσ−1(j)))j = (δi,σ−1(j))j = (δσ(i),j)j = eσ(i)

show that the identifications above are equivariant.

4.1.6. Definition. — We call the composition

ϕ0 : Γn ↪→ Zn ↠ Γ∨
n

the canonical map.

4.1.7. Proposition. — The canonical map ϕ0 induces a short exact sequence of
Z[Sn]-modules

0→ Γn → Γ∨
n → Z/nZ→ 0, (4.1.2)

where the action of Sn on Z/nZ is trivial.

Proof. — We have ∆(k) ∈ Γn for some k ∈ Z if and only if nk = 0, so the canonical
map ϕ0 is injective.

An element [(k1, . . . , kn)] ∈ Γ∨
n lies in the image of the map ϕ0 if and only if

(k1, . . . , kn) + ∆(a) ∈ Γn for some a ∈ Z. This is equivalent to
∑
ki = −na, i.e. to

n divides
∑
ki. So ϕ0 : Γn ↪→ Γ∨

n is an injection of index n; the quotient is generated
by (k, 0, . . . , 0) for k = 0, . . . , n− 1, and we see that Seq. (4.1.2) is an exact sequence.

Finally, the action of Sn on Z/nZ is trivial: Consider a transposition τ ∈ Sn and
k ∈ Z, then

τ.(k, 0, . . . , 0) = (0, . . . , k, . . . , 0)
≡ (0, . . . , k, . . . , 0) + (k, 0, . . . ,−k, . . . , 0) (mod Γn)
= (k, 0, . . . , 0).
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4.1.8. Proposition. — Let B be an abelian group, endowed with the trivial Sn-action.
Then there exists an exact sequence of Z[Sn]-modules

0→ B[n] ∆−→ B ⊗Z Γn
id ⊗ϕ0−−−−→ B ⊗Z Γ∨

n
Σ−→ B/nB → 0,

where Σ is the summation map modulo n and ∆ is the diagonal map corestricted to
B ⊗Z Γn ⊂ B ⊗Z Zn. In particular, if A is an n-divisible abelian group, then we have
exact sequences of Z[Sn]-modules

0→ A[n] ∆−→ A⊗Z Γn
id ⊗ϕ0−−−−→ A⊗Z Γ∨

n → 0

and
0→ A[n] ∆−→ A[n]⊗Z Γn

id ⊗ϕ0−−−−→ A[n]⊗Z Γ∨
n

Σ−→ A[n]→ 0.

Proof. — The sequence is obtained by tensoring Seq. (4.1.2) with B. The left most
term is B[n] because of the description of the kernel of id⊗ϕ0 at the beginning of
the proof of Proposition 4.1.7. The rightmost map satisfies Σ([(a, 0, . . . , 0)]) = a and
Σ([(ai)i]) = 0 when

∑
i ai = 0, so we recognize the map Σ as the summation map.

Since A is n-divisible, we have A/nA = 0, and we always have A[n]/nA[n] = A[n].
So the last two sequences in the statement follow by taking B = A and B = A[n],
respectively.

4.1.9. Proposition. — For n ≥ 2 we have
(i) HomZ[Sn](Γn,Γn) = Z · id, and HomZ[Sn](Γ∨

n ,Γ∨
n) = Z · id.

Assume that n ≥ 3, then we have
(ii) HomZ[Sn](Γn,Γ∨

n) = Z · ϕ0,
and in particular, Γn and Γ∨

n are not isomorphic as Z[Sn]-modules.

Proof. — (i) Extending scalars to Q, both Γn ⊗ Q and Γ∨
n ⊗ Q become the usual

standard representation of Sn, which is irreducible. So by Schur’s lemma, every
Sn-equivariant morphism ϕ : Γn → Γn (respectively ϕ : Γ∨

n → Γ∨
n) becomes of the form

ϕQ = λ · id for some λ ∈ Q. But since ϕ is defined integrally, we must have λ ∈ Z
actually.

(ii) Using Seq. (4.1.2), the canonical map ϕ0 becomes an isomorphism after extending
scalars to Q. So, as above, every Sn-equivariant morphism ϕ : Γn → Γ∨

n becomes of
the form

ϕQ = λ · ϕ0,Q

for some λ ∈ Q. By looking at the short exact sequence Seq. (4.1.2) and the elementary
divisors normal form of ϕ0, we see that ϕ0 corresponds to diag(1, . . . , 1, n) in suitable
bases of Γn and Γ∨

n . For n ≥ 3 this forces λ ∈ Z, as desired.
Finally, Γn and Γ∨

n cannot be isomorphic as Z[Sn]-modules, since ϕ0 is not surjective.

4.1.10. Remark. — For n = 2, the map ϕ0 ∈ Hom(Γ2,Γ∨
2 ) is not a generator. In fact

both Γ2 and Γ∨
2 are isomorphic to the sign representation. Under these identifications

the map ϕ0 becomes 2 · id.
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4.1.11. Proposition (The dual isogeny ϕ̂0). — There exists a unique map
ϕ̂0 : Γ∨

n → Γn of Z[Sn]-modules such that ϕ̂0 ◦ ϕ0 = n · id and ϕ0 ◦ ϕ̂0 = n · id, which
we call the dual isogeny of ϕ0.

Proof. — We construct a ‘dual isogeny’ ϕ̂0 : Γ∨
n → Γn to the canonical map ϕ0 : Γn→Γ∨

n .
Consider the diagram

Γ∨
n Γn ⊗Z Q Γn ⊗Z Q

1
nΓn Γn.

ϕ−1
0 ·n

·n

We claim that im(ϕ−1
0 ) ⊂ 1

nΓn. Indeed, note that we have nΓ∨
n ⊂ im(ϕ0) ⊂ Γ∨

n by
Sequence (4.1.2). So for every y ∈ Γ∨

n , there exists x ∈ Γn such that n · y = ϕ0(x),
i.e. y = ϕ0( 1

nx). Now we define

ϕ̂0 := n · ϕ−1
0 : Γ∨

n → Γn,

and see that
ϕ̂0 ◦ ϕ0 = n · id and ϕ0 ◦ ϕ̂0 = n · id .

Uniqueness follows from the injectivity of ϕ0.

4.1.12. Remark. — The map ϕ̂0 : Γ∨
n → Γn is explicitly given by

[(ai)i] 7→ (n · ai)i
if
∑
i ai = 0, and maps

[(1, 0, . . . , 0)] 7→ (n− 1,−1, . . . ,−1).

These two mapping rules are compatible since (n, 0, . . . , 0) ≡ (n− 1,−1, . . . ,−1) ∈ Γ∨
n .

4.1.13. Proposition. — Let A be an n-divisible abelian group, then we have an
exact sequence

0→ A[n] ∆−→ A[n]⊗Z Γn
ϕ0−→ A⊗Z Γ∨

n
ϕ̂0−→ A⊗Z Γn → 0

of Z[Sn]-modules, where A carries the trivial action.

Proof. — Denote the inclusion A[n] ↪→ A by ı, and note that the induced map

ı⊗ id : A[n]⊗Z Γ∨
n → A⊗Z Γ∨

n

is still injective, since Γ∨
n is free as an abelian group. Then the exactness at the two

left terms follows from Proposition 4.1.8.
By the surjectivity in the second sequence of Proposition 4.1.8 we know that every

element [(ai)i] ∈ A⊗Z Γ∨
n satisfies

∑
i ai = 0. So by the explicit form in Remark 4.1.12,

the kernel of id⊗ϕ̂0 consists of those [(ai)i] such that nai = 0. The image of ı⊗ ϕ0
consists of those [(ai)i] such that nai = 0 and

∑
i ai = 0, where the latter condition is

vacuous.
The map id⊗ϕ̂0 is surjective since ϕ̂0 ◦ ϕ0 = n · id and A is n-divisible.
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4.1.14. Proposition. — For n ≥ 2 we have HomZ[Sn](Γ∨
n ,Γn) = Z · ϕ̂0.

Proof. — Similar to the proof of Proposition 4.1.9, we see that for every homomor-
phism ϕ ∈ HomZ[Sn](Γ∨

n ,Γn) there exists some λ ∈ Q such that ϕQ = λ · ϕ̂0,Q. Recall
that in suitable integral bases, the map ϕ0 corresponds to the matrix diag(1, . . . , 1, n).
So, ϕ̂0 corresponds to the matrix diag(n, . . . , n, 1), which forces λ ∈ Z as desired.

4.1.15. — Identifying Γ∨
n with the dual of Γn by ¶4.1.5, the canonical “evaluation”

morphism

ev: Γn → Γ∨∨
n

x 7→ (ψ 7→ ψ(x))

is an isomorphism since Γn ≃ Zn−1 is a free abelian group.

4.1.16. Proposition. — The canonical map ϕ0 and its dual isogeny ϕ̂0 are both
symmetric, i.e. we have the identities

(i) ϕ0 = ϕ∨
0 ◦ ev, and

(ii) ϕ̂0 = ev−1 ◦(ϕ̂0)∨.

Proof. — (i) For x, y ∈ Γn we have

ϕ∨
0 (ev(x))(y) = ev(x)(ϕ0(y)) = ϕ0(y)(x).

We want to compare this with ϕ0(x)(y). Take x = ẽi and y = ẽj , where ẽi := ei − en
is the i-th standard basis vactor of Γn. Then

ϕ0(ẽi) = e∨
i − e∨

n ,

so ϕ0(ẽi)(ẽj) = 1 if i ̸= j and ϕ0(ẽi)(ẽj) = 2 if i = j. This is evidently independent of
the order of i and j.

(ii) Since Γn is torsion-free, we can check the claimed equality after extending scalars
to Q. By (i) we know that ϕ0 = ϕ∨

0 ◦ ev, so ϕ−1
0 = ev−1 ◦(ϕ∨

0 )−1 = ev−1 ◦(ϕ−1
0 )∨, and

hence n · ϕ−1
0 = ev−1 ◦(n · ϕ−1

0 )∨, as desired.
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4.2. Group cohomology of the standard representation

In this section we calculate the group cohomology H•(Sn,Γn ⊗Z A) in the stable
range with arbitrary coefficients in an abelian group A in terms of the group cohomology
H•(Sn, A) of the symmetric group. We believe the cohomology computations in this
sections are new and original. We have recalled the general theory of group cohomology
in §3.1.

By convention an abstract abelian group A becomes a Z[Sn]-module by endowing
it with the trivial Sn-action.

4.2.1. Proposition. — Let A be an abelian group, then H0(Sn,Γn ⊗Z A) = A[n],
for n ≥ 2.

Proof. — Recall that H0(Sn,Γn ⊗Z A) = (Γn ⊗Z A)Sn is the submodule of Sn-fixed
points in Γn ⊗Z A. Note that (a1, . . . , an) ∈ A×n is fixed by Sn if and only if
a1 = · · · = an =: a. But (a, . . . , a) ∈ Γn ⊗Z A if and only if n · a = 0.

4.2.2. Proposition. — Let A be an abelian group, then we have H0(Sn,Γ∨
n⊗ZA) = 0

for n ≥ 3, and H0(S2,Γ∨
2 ⊗Z A) = A[2] for n = 2.

Proof. — Recall that Γ∨
n ⊗Z A is the cokernel of the diagonal map ∆ : A → A×n.

Consider a fixed point [(ai)i] ∈ (Γ∨
n ⊗Z A)Sn . Let τ ∈ Sn be some transposition,

say τ = (1 2) to keep the notation simple. Then being fixed by τ means that we
have (a1, a2, . . . , an) = (a2, a1, . . . , an) +∆(a) for some a ∈ A. For n ≥ 3 this entails
a3 = a3 +a, which implies a = 0. So the representative (ai)i itself is already fixed by τ .
In conclusion, we see that (ai)i = ∆(a1), which is zero in Γ∨

n ⊗Z A.
For n = 2 we can consider (a1, 0) without loss of generality. Being fixed by τ means

(a1, 0) = (0, a1) + (a, a) for some a ∈ A, or equivalently 2a1 = 0 and a = a1.

4.2.3. Remark. — The preceding proposition also follows from Proposition 4.2.7
below.

Recall the unit ι : A→ IndSn

Sn−1
(ResSn

Sn−1
(A)) of the restriction-coinduction adjunc-

tion and the counit ν : IndSn

Sn−1
(ResSn

Sn−1
(A))→ A of the induction-restriction adjunc-

tion from Definition 3.1.20. Also recall the canonical projection π : IndSn

Sn−1
(A)→ A

from ¶3.1.16.

4.2.4. Proposition. — Let A be an abelian group (endowed with the trivial Sn−1-
action), and let A×n be the permutation Sn-representation. Then we have an isomor-
phism of Z[Sn]-modules

IndSn

Sn−1
(A) ≃ A×n,

such that, under this isomorphism,
(i) the canonical map π corresponds to the the projection e∨

n onto the n-th coordinate,
(ii) the morphism ι corresponds to the diagonal map ∆ : A→ A×n.
(iii) the morphism ν corresponds to the the sum map Σ : A×n → A.
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Proof. — Recall that we have IndSn

Sn−1
(A) ≃ Map(Sn−1\Sn, A) with Sn-action given

by σ.ϕ = x 7→ ϕ(x◦σ), since the action on A is trivial. Now Sn acts transitively on the
set {1, . . . , n} from the right via k.σ := σ−1(k). Then Sn−1 = Stab(n) is the stabilizer
of the element n, so we get an isomorphism of right Sn-sets

Sn−1\Sn ∼−→ {1, . . . , n}, Sn−1σ 7→ σ−1(n).

Identifying Map({1, . . . , n}, A) with A×n, an n-tuple (a1, . . . , an) ∈ A×n gets acted
on as σ.(ai)i = (ai.σ)i = (aσ−1(i))i, exactly as in the permutation representation.

(i) Let us now compute the maps π, ν, and ι under the identifications above. By
definition π(ϕ) = ϕ(id), for ϕ ∈ IndSn

Sn−1
(A). Now under the identification Sn−1\Sn ≃

{1, . . . , n}, the element id corresponds to the element n. Denote the element induced
by ϕ by ϕ ∈ Map({1, . . . , n}, A). Then we have π(ϕ) = ϕ(n), which means that π
becomes the projection onto the n-th coordinate.

(ii) Consider the map ι : A → IndSn

Sn−1
(A). We have ι(a) = (σ 7→ σ.a) =: ϕ by

definition. Since the action on A is trivial, this is just the constant map consta with
value a. But this implies that also ϕ = consta, which corresponds to the n-tuple
(a, . . . , a) ∈ A×n, as desired.

(iii) Consider the map ν : IndSn

Sn−1
(A)→ A, which is given by

ϕ 7→
∑

[σ]∈Sn/Sn−1

σ.ϕ(σ−1) =
∑

[σ]∈Sn/Sn−1

ϕ(σ−1).

If {σ1, . . . , σn} is a set of left-coset representatives, then {σ−1
1 , . . . , σ−1

n } is a set of
right-coset representatives. So an element (ai)i ∈ A×n corresponds to ϕ satisfying
ϕ(σ−1

i ) = ai. Now ν(ϕ) =
∑n
i=1 ϕ(σ−1

i ) =
∑n
i=1 ai, which witnesses that ν becomes

the summation map Σ.

Now we can deduce the following result from Nakaoka’s stability theorem (Theo-
rem 3.1.32).

4.2.5. Proposition. — Let A be an abelian group. Then we have a short exact
sequence

0→ Hk−1(Sn, A)/nHk−1(Sn, A)→ Hk(Sn,Γn ⊗Z A)→ Hk(Sn,Zn ⊗Z A)[n]→ 0

for k < n/2. When k = n/2, we still have the injection on the left side.

Proof. — Apply group cohomology to the defining short exact sequence (4.1.1) of
Γn ⊗Z A to get the exact sequence

· · · → Hi(Sn,Γn ⊗Z A)→ Hi(Sn,Zn ⊗Z A) Σi
∗−−→ Hi(Sn,Z⊗Z A)→ · · ·

Using the identification from Proposition 4.2.4, Shapiro’s isomorphism (Proposi-
tion 3.1.18) and Proposition 3.1.24, we extend this to a commutative diagram

· · · Hi(Sn,Γn ⊗Z A) Hi(Sn,Zn ⊗Z A) Hi(Sn,Z⊗Z A) · · ·

Hi(Sn−1,Z⊗Z A).

Σi
∗

sh

∼

corSn
Sn−1



80 Chapter 4. The integral standard representation of Sn

Now using the formula corSn

Sn−1
◦ resSn

Sn−1
= (Sn : Sn−1) id = n id of Proposi-

tion 3.1.25, and that resSn

Sn−1
is an isomorphism for i < n/2 by Theorem 3.1.32, we get

for i = k

ker(corSn

Sn−1
: Hk(Sn−1, A)→ Hk(Sn, A)) = Hk(Sn−1, A)[n],

which determines ker(Σk
∗ ) = Hk(Sn,Zn ⊗Z A)[n]. For i = k − 1 we get

im(Σk−1
∗ ) = im(corSn

Sn−1
: Hk−1(Sn−1, A)→ Hk−1(Sn, A)) = n ·Hk−1(Sn, A).

So the long exact sequence above induces the desired short exact sequence. The
statement about injectivity in the case k = n/2 is also explained by the part above
where we take i = k − 1.

4.2.6. Corollary. — Let A be an abelian group, and assume n ≥ 3, then we have a
short exact sequence

0→ A/nA→ H1(Sn,Γn ⊗Z A)→ A[2][n]→ 0,

where A[2][n] denotes the n-torsion subgroup of the 2-torsion subgroup of A.

Proof. — Since the action on A is trivial, we have H0(Sn, A) = A. Taking the
viewpoint that the first cohomology group consists of crossed-homomorphisms, cf.
(3.1.5), we see that

H1(Sn−1, A) ≃ Hom((Sn−1)ab, A) ≃ Hom(Z/2Z, A) ≃ A[2].

Now we use Shapiro’s isomorphism H1(Sn, A×n) ∼−→ H1(Sn−1, A), and conclude by
applying Proposition 4.2.5.

4.2.7. Proposition. — Let A be an abelian group. Then we have for k < n/2− 1
the identity

Hk(Sn,Γ∨
n ⊗Z A) = 0,

and for k < n/2 we have an exact sequence

0→ Hk(Sn,Γ∨
n ⊗Z A)→ Hk+1(Sn,Z⊗Z A) res−−→ Hk+1(Sn−1,Z⊗Z A).

Proof. — Similar to above, apply group cohomology to the defining short exact
cokernel sequence of Γ∨

n ⊗Z A, cf. Definition 4.1.3, to get the commutative diagram
with exact rows

· · · Hi(Sn,Z⊗Z A) Hi(Sn,Zn ⊗Z A) Hi(Sn,Γ∨
n ⊗Z A) · · ·

Hi(Sn−1,Z⊗Z A).
resSn

Sn−1

∆∗

sh

∼

By Theorem 3.1.32, the restriction map resSn

Sn−1
is an isomorphism for i < n/2. This

information for i = k and i = k + 1 yields the claims in the proposition.
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4.2.8. Proposition. — Let A be an abelian group. Then we have

H1(Sn,Γ∨
n ⊗Z A) = 0

when n = 3 or n ≥ 5. For n = 4 we have

H1(S4,Γ∨
4 ⊗Z A) ≃ A[2].

Proof. — The claim for n ≥ 5 follows directly from Proposition 4.2.7, which also
provides the following information

H1(S3,Γ∨
3 ⊗Z A) = ker(res : H2(S3, A)→ H2(S2, A)),

H1(S4,Γ∨
4 ⊗Z A) = ker(res : H2(S4, A)→ H2(S3, A)).

Since the action on A is trivial, we can apply the universal coefficient theorem for
group cohomology (Proposition 3.1.12) to get the short exact sequence

0→ Ext1
Z(H1(Sn,Z), A) γ−→ H2(Sn, A)→ HomZ(H2(Sn,Z), A)→ 0,

which is compatible with the restriction maps resSn

Sn−1
by functoriality. Recall that

H1(Sn,Z) ≃ (Sn)ab by (3.1.6).
For n ≤ 3 we have a trivial Schur multiplier H2(Sn,Z) = 0, cf. Example 3.1.30, so

γ is an isomorphism. The inclusion S2 ↪→ S3 induces an isomorphism (S2)ab ∼−→(S3)ab,
and hence an isomorphism of Ext-groups. In conclusion, the restriction map
res : H2(S3, A)→ H2(S2, A) is an isomorphism, and H1(S3,Γ∨

3 ⊗Z A) = 0.
Now we consider the case n = 4. We have a commutative diagram with exact rows

0 Ext1
Z((S4)ab, A) H2(S4, A) HomZ(H2(S4,Z), A) 0

0 Ext1
Z((S3)ab, A) H2(S3, A) HomZ(H2(S3,Z), A) 0.

≃ res res

From this, and the facts H2(S3,Z) = 0 and H2(S4,Z) ≃ Z/2Z, cf. Example 3.1.30, we
conclude that

H1(S4,Γ∨
4 ⊗Z A) = ker(res : H2(S4, A)→ H2(S3, A))

≃ HomZ(H2(S4,Z), A)
≃ HomZ(Z/2Z, A)
≃ A[2].

4.2.9. Theorem. — Let n ≥ 2, let A be an n-divisible abelian group, and let Ǎ be
an abelian group. We assume that Ǎ is 2-divisible in the case n = 2, . Then we have

H1(Sn,Z) = 0, (4.2.1)

H1(Sn, A⊗Z Γn) =
{

0 if n odd, or n = 2
A[2] if n even, and n ̸= 2,

(4.2.2)

H1(Sn, Ǎ⊗Z Γ∨
n) =

{
0 if n ̸= 4
Ǎ[2] if n = 4.

(4.2.3)
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Proof. — We have H1(Sn,Z) = Hom(Sn,Z) = 0, since Sn acts trivially on Z and the
latter is torsion free, cf. (3.1.5). For n ≥ 3, we have by Corollary 4.2.6

H1(Sn, A⊗Z Γn) ∼−→ A[2][n],

since A is an n-divisible group, i.e. A/nA = 0. Of course, A[2][n] is just A[2] when n

is even, and 0 when n is odd. We saw in Proposition 4.2.8 that

H1(Sn, Ǎ⊗Z Γ∨
n) = 0

when n ≥ 5 or n = 3, and
H1(S4, Ǎ⊗Z Γ∨

4 ) = Ǎ[2]
when n = 4.

The case n = 2 was treated in [Plo05, Prop. 4.8]. Let us briefly spell out the
details. Recall that we have an isomorphism Γ2 ≃ Γ∨

2 , both being isomorphic to the
sign-representation. Now a 1-cocycle f : S2 → A ⊗ Γ2 is determined by the image
point f((1 2)) = (a,−a). But the equality

(1 2).(−a/2, a/2)− (−a/2, a/2) = (a,−a)

realized f as a 1-coboundary.

4.2.10. Remark. — We will apply Theorem 4.2.9 only with A = A(k) the group of
k-rational points of an abelian variety A and Ǎ = A∨(k) the group of k-rational points
of the dual abelian variety A∨. Recall that A(k) and A∨(k) are indeed n-divisible
abelian groups for any n ≥ 1, cf. Example 1.2.13. In this case, using Corollary 5.1.7
below, we can replace the term A∨(k)⊗Z Γ∨

n in the theorem by

(A⊗ Γn)∨(k) ≃ (A∨ ⊗ Γ∨
n)(k) ≃ A∨(k)⊗Z Γ∨

n .

4.2.11. Remark. — The adventurous reader may ponder whether Theorem 4.2.9 is
valid for an abelian variety A without taking rational points and by working in the
category of commutative group schemes. They may think in particular about group
cohomology with coefficients in this category, for example using explicit resolutions
and concrete constructions. Another viewpoint is to consider an abelian variety as an
abelian fppf sheaf.



CHAPTER 5

Invariant derived autoequivalences

5.1. Sn-invariant symplectic isomorphisms

From now on let A be an abelian variety. We first discuss the interactions of the
construction A⊗Γn with taking duals and homomorphism spaces, which is well known
to the experts from the viewpoint of Serre’s tensor constructions, cf. [Con04, §7],
[Ami18, §1]. Afterwards we are concerned with the computation of the Sn-invariants
of the group of symplectic automorphisms Sp′(A⊗ Γn), cf. Proposition 5.1.10, as well
as of the set of symplectic isomorphisms Sp′(A⊗ Γn, A∨ ⊗ Γn), cf. Proposition 5.1.13,
which provide a key ingredient in the proofs of our main theorems later on.

5.1.1. Situation. — Let A and B be abelian varieties over a field k. The reader may
assume that char(k) = 0 in order to remove the assumptions below that λ0 : A→ A∨

is a separable polarization.

5.1.2. Notation. — Denote by AV the category of abelian varieties, and by Modffg
Z

the category of free and finitely generated abelian groups.

5.1.3. — Let Γ, Γ ′ ∈Modffg
Z be free abelian groups of finite rank rk(Γ ) = m and

rk(Γ ′) = m′. We have non-canonical isomorphisms Γ ≃ Zm and Γ ′ ≃ Zm′ , so

A⊗ Γ ≃ A×m and B ⊗ Γ ′ ≃ B×m′

non-canonically. But this viewpoint shows nevertheless that the construction A⊗ Γ is
functorial with respect to morphisms in AV and morphisms in Modffg

Z , where we can
view the latter homomorphisms as matrices, e.g. HomZ(Γ, Γ ′) becomes Mat(m′×m,Z)
after choosing bases once and for all. In particular, we have a map

Hom(A,B)⊗Z HomZ(Γ, Γ ′)→ Hom(A⊗ Γ,B ⊗ Γ ′) (5.1.1)

which is natural in each variable. Using the matrix viewpoint and ¶1.2.7, one observes
that (5.1.1) is an isomorphism

Hom(A,B)⊗Z HomZ(Γ, Γ ′) ≃ Mat(m′ ×m,Hom(A,B))
≃ Hom(A⊗ Γ,B ⊗ Γ ′)
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5.1.4. — Recall from ¶1.2.9 that we have a canonical isomorphism

ψ : (A×m)∨ ∼−→ (A∨)×m

which is defined as ψ = (ı∨1 , . . . , ı∨m), where ık : A ↪→ A×m denotes the k-th coordinate
embedding.

Let Γ be a free abelian group of rank m. We pick a basis of Γ and endow Γ∨ with
the dual basis. Then we have an isomorphism

φA,Γ : (A⊗ Γ )∨ ∼−→ (A×m)∨ ∼−→ (A∨)×m ∼−→ A∨ ⊗ Γ∨

which a priori appears to be non-canonical. But we can demonstrate otherwise:

5.1.5. Proposition. — The maps φA,Γ : (A ⊗ Γ )∨ → A∨ ⊗ Γ∨ provide a natural
isomorphism of contravariant functors AV×Modffg

Z → AV.

Proof. — Let f : A→ B be a homomorphism of abelian varieties, and let g : Γ → Γ ′

be a homomorphism of free abelian groups of rank m and m′, respectively. Identify

Γ ≃ Zm and Γ ′ ≃ Zm
′

using the bases that we have chosen when defining φ−,Γ and φ−,Γ ′ . Then g corresponds
to a matrix M ∈ Mat(m′ ×m,Z), and g∨ corresponds to the transposed matrix M t.
Denote by f ·M the matrix with entries in Hom(A,B) that arises fromM by multiplying
each entry with f . Consider the following diagram:

(A⊗ Γ )∨ (A×m)∨ (A∨)×m A∨ ⊗ Γ∨

(B ⊗ Γ ′)∨ (B×m′)∨ (B∨)×m′
B∨ ⊗ Γ ′∨.

basis

(1)

(ı∨1 ,...,ı
∨
m)

(2)

dual
basis

(3)(f⊗g)∨

basis

(f ·M)∨

(ı∨1 ,...,ı
∨
m′ )

f∨·Mt

dual
basis

f∨⊗g∨

Now (1) and (3) commute be the construction of (5.1.1) in ¶5.1.3. Regarding (2), we
post-compose with the projection prk : (A∨)×m → A∨ onto the k-th factor, denote the
k-th standard basis vector of Zm by ek, and calculate

prk ◦ (ı∨1 , . . . , ı∨m) ◦ (f ·M)∨ = ı∨k ◦ (f ·M)∨ = (f ·M ◦ ık)∨

= (f ·Mek)∨ = (Mek ◦ f)∨ = f∨ ◦ (Mek)∨

and

prk ◦ (f∨ ·M t) ◦ (ı∨1 , . . . , ı∨m′) = (f∨ · et
kM

t) ◦ (ı∨1 , . . . , ı∨m′)
= f∨ ◦ (Mek)t ◦ (ı∨1 , . . . , ı∨m′) = f∨ ◦ (Mek)∨,

where we used in the very last step that∑
j

Mj,k · ı∨j =
(∑

j

Mj,k · ıj
)∨
.

5.1.6. Remark. — Strictly speaking we have defined A⊗ Γn as the kernel of the
summation map Σ : A×n → A, and A ⊗ Γ∨

n as the cokernel of the diagonal map
∆ : A→ A×n. From this point of view one verifies by calculating that the following
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diagram commutes, where the top row is exact by ¶1.2.10 and arises by dualizing
the sequence (4.1.1) of abelian varieties. (Here f is the inclusion of the kernel of the
summation map, and g denotes the canonical map to the cokernel of the diagonal
map.)

0 A∨ (A×n)∨ (A⊗ Γn)∨ 0

0 A∨ (A∨)×n A∨ ⊗ Γ∨
n 0

Σ∨

id

f∨

ψ φ

∆ g

The isomorphisms ψ and φ = φA,Γn
were defined in ¶5.1.4. Our basis of choice

for Γn is ei − en, where i = 1, . . . n − 1, and for Γn we have the basis [ei], where
i = 1, . . . n − 1. We check that the right square commutes. Post-composition with
the projections prj : A∨ ⊗ Γ∨

n → A∨ associated with our choice of basis yields for
j = 1, . . . , n− 1 that

prj ◦ g ◦ ψ = (prj − prn) ◦ ψ = ι∨j − ι∨n , and
prj ◦ φ ◦ f∨ = ι∨j ◦ f∨ = (f ◦ ιj)∨ = (ιj − ιn)∨ = ι∨j − ι∨n ,

as desired. Now we check that the left square commutes. Again, post-composition
with the projections prj : (A∨)n → A∨ for j = 1, . . . , n yields

prj ◦ ψ ◦Σ∨ = ι∨j ◦Σ∨ = (Σ ◦ ιj)∨ = id∨ = id, and
prj ◦∆ ◦ id = id .

One observes readily that ψ is equivariant, since the Sn-action only “permutes the
indices”. In fact, we already checked in the proof of Proposition 5.1.5 that ψ is natural.
This forces φ to be equivariant as well.

5.1.7. Corollary. — The natural isomorphism (A ⊗ Γn)∨ ∼−→ A∨ ⊗ Γ∨
n is Sn-

equivariant.

Proof. — Recall that the Sn-action on A⊗ Γn induces a left action on (A⊗ Γn)∨ via

σ.α := ((σ−1).)∨(α).

Under the natural isomorphisms of Proposition 5.1.5 this becomes

id∨⊗((σ−1).)∨ : A∨ ⊗ Γ∨
n → A∨ ⊗ Γ∨

n

which matches exactly the Sn-action on Γ∨
n by ¶4.1.5.

5.1.8. Corollary. — We have Sn-equivariant natural isomorphisms
(i) Hom(A⊗ Γn, A⊗ Γn) ≃ Hom(A,A)⊗Z HomZ(Γn,Γn),
(ii) Hom((A⊗ Γn)∨, A⊗ Γn) ≃ Hom(A∨, A)⊗Z HomZ(Γ∨

n ,Γn),
(iii) Hom(A⊗ Γn, (A⊗ Γn)∨) ≃ Hom(A,A∨)⊗Z HomZ(Γn,Γ∨

n),
(iv) Hom((A⊗ Γn)∨, (A⊗ Γn)∨) ≃ Hom(A∨, A∨)⊗Z HomZ(Γ∨

n ,Γ∨
n).

In particular, these isomorphisms are compatible with all well-defined compositions of
morphisms in these groups.



86 Chapter 5. Invariant derived autoequivalences

Proof. — We spell out the proof for (iii); the other cases are analogous. Apply
Corollary 5.1.7 in order to replace (A ⊗ Γn)∨ by A∨ ⊗ Γ∨

n . We already exhibited a
natural isomorphism

Hom(A,A∨)⊗Z HomZ(Γn,Γ∨
n)→ Hom(A⊗ Γn, A∨ ⊗ Γ∨

n)

in ¶5.1.3, which in particular is compatible with all well-defined compositions of
morphisms between A and A∨ as well as Γn and Γ∨

n .
Recall that the induced action on homomorphism spaces is σ.h := σ. ◦ h ◦ (σ−1).,

so the action on the left hand side is given by

σ.(f ⊗ g) = f ⊗ (σ. ◦ g ◦ (σ−1).),

while the action on the right hand side is given by

σ.(f ⊗ g) = σ. ◦ (f ⊗ g) ◦ (σ−1).
= (id⊗σ.) ◦ (f ⊗ g) ◦ (id⊗(σ−1).)

= f ⊗ (σ. ◦ g ◦ (σ−1).).

5.1.9. Proposition. — Assume that dim(A) = 2 and that End(A) = Z. Write
Hom(A,A∨) = Z · λ0, where λ0 is a separable polarization, and let d2 = deg(λ0).
Let Γ be a free abelian group of rank n− 1, e.g. Γ = Γn, then we have an isomorphism

Sp(A⊗ Γ ) ≃
{(

M1 M2
M3 M4

)
∈ Sp(2(n− 1),Z)

∣∣∣∣M3 ≡ 0 mod d

}
.

Proof. — Let f ∈ Sp(A ⊗ Γ ), then by the results of §1.2, using dim(A) = 2 and
End(A) = Z, we have

f1 = id ⊗ g1 ∈ Hom(A,A) ⊗HomZ(Γ, Γ )

f2 = λδ0 ⊗ g2 ∈ Hom(A∨, A) ⊗HomZ(Γ∨, Γ )
f3 = λ0 ⊗ g3 ∈ Hom(A,A∨) ⊗HomZ(Γ, Γ∨)
f4 = id ⊗ g4 ∈ Hom(A∨, A∨)⊗HomZ(Γ∨, Γ∨).

Now the proof is a synthesis of the arguments of Propositions 2.3.5 and 2.3.7. As in
these arguments, we can view each gi as a matrix Mi ∈ Mat((n − 1) × (n − 1),Z).
Since λδ0 ◦ λ0 = [d] and λ0 ◦ λδ0 = [d], we get a group homomorphism

Sp(A⊗ Γ )→ Mat(2(n− 1)× 2(n− 1),Z) (5.1.2)

f 7→
(

M1 M2
d ·M3 M4

)
.

As in Proposition 2.3.5 the condition f̃ = f−1 singles out symplectic matrices. So the
map in (5.1.2) provides the desired isomorphism.

Recall from Definition 2.3.6 that the Hecke congruence subgroup Γ0(l) ⊂ SL2(Z) of
level l ∈ N consists of two-by-two matrices with determinant 1 and lower left entry
divisible by l.
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5.1.10. Proposition. — Let n ≥ 3 be an integer, and let A ̸= 0 be an abelian
variety.

(i) Given a symmetric isogeny (e.g. polarization) λ : A→ A∨ of exponent e, there
exists an associated injective group homomorphism

Γ0(ne) ↪→ Sp′(A⊗ Γn)Sn . (5.1.3)

(ii) Assume that dim(A) = 2 and End(A) = Z, and let d2 denote the minimal degree
of a polarization of A which we assume to be separable. Then (5.1.3) becomes
an isomorphism

Sp′(A⊗ Γn)Sn ≃ Γ0(nd) ⊂ SL2(Z).

5.1.11. Remark. — The proposition remains true when replacing Sp′(A⊗ Γn)Sn by
Sp(A⊗ Γn)Sn .

Proof. — (i) Recall from ¶1.2.21 that there exists a symmetric isogeny λD : A∨ → A

such that λ◦λD = [e] = λD ◦λ. Also recall from Definition 4.1.6 and Proposition 4.1.11
the canonical map ϕ0 : Γn ↪→ Zn ↠ Γ∨

n and its dual isogeny ϕ̂0 : Γ∨
n → Γn. By

Propositions 4.1.9 and 4.1.14 and Corollary 5.1.8 we have the inclusions of Sn-fixed
point groups

Hom(A⊗ Γn, A⊗ Γn)Sn ⊇ Hom(A,A)⊗Z HomZ(Γn,Γn)Sn

≃ Hom(A,A)⊗Z HomZ[Sn](Γn,Γn) (5.1.4)
⊇ (Z · id) ⊗Z (Z · id),

Hom(A⊗ Γn, (A⊗ Γn)∨)Sn ⊇ (Z · λ) ⊗Z (Z · ϕ0), (5.1.5)

Hom((A⊗ Γn)∨, A⊗ Γn)Sn ⊇ (Z · λD)⊗Z (Z · ϕ̂0), (5.1.6)

Hom((A⊗ Γn)∨, (A⊗ Γn)∨)Sn ⊇ (Z · id) ⊗Z (Z · id). (5.1.7)

Consider the map φ : Γ0(ne)→ IsomAV((A⊗ Γn)× (A⊗ Γn)∨)Sn given by

M :=
(

a1 a2
ne a3 a4

)
7→

(
a1 · (id⊗ id) a2 · (λD ⊗ ϕ̂0)
a3 · (λ⊗ ϕ0) a4 · (id⊗ id)

)
=: f,

which is clearly injective. Since λ ◦ λD = [e] and λD ◦ λ = [e], as well as ϕ̂0 ◦ ϕ0 = n

and ϕ0 ◦ ϕ̂0 = n, we see that φ is a group homomorphism, cf. Proposition 2.3.7. As
before in the proof of Proposition 2.3.5, and using Proposition 4.1.16, we have

f̃ =
(

a4 · (id⊗ id) −a2 · (λD ⊗ ϕ̂0)
−a3 · (λ⊗ ϕ0) a1 · (id⊗ id)

)
.

Now the condition f−1 = f̃ becomes in matrix form M−1 = J tM tJ , cf. Proposi-
tion 2.3.5, which just means det(M) = 1 in this instance. It is clear that f is admissible,
since id is an isogeny. So the injective homomorphism φ factors over Sp′(A⊗Γn)Sn as

φ : Γ0(ne) ∼−→

{(
a1 · (id⊗ id) a2 · (λD ⊗ ϕ̂0)
a3 · (λ⊗ ϕ0) a4 · (id⊗ id)

)∣∣∣∣∣a1a4 − nea2a3 = 1
}
⊂ Sp′(A⊗ Γn)Sn .
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(ii) Write Hom(A,A∨) = Z · λ0, so that d2 = deg(λ0). Setting λ := λ0, we have,
using dim(A) = 2, End(A) = Z and Proposition 1.2.27, that λD = λδ0 and the
exponent e(λ0) satisfies e(λ0) = d. By Propositions 4.1.9 and 4.1.14 and the results
of §1.2 we see, for n ≥ 3, that the inclusions (5.1.4)–(5.1.7) become isomorphisms

Hom(A⊗ Γn, A⊗ Γn)Sn ≃ (Z · id) ⊗Z (Z · id),

Hom(A⊗ Γn, (A⊗ Γn)∨)Sn ≃ (Z · λ0)⊗Z (Z · ϕ0),

Hom((A⊗ Γn)∨, A⊗ Γn)Sn ≃ (Z · λδ0)⊗Z (Z · ϕ̂0),

Hom((A⊗ Γn)∨, (A⊗ Γn)∨)Sn ≃ (Z · id) ⊗Z (Z · id).

This shows that

Sp′(A⊗ Γn)Sn =
{
f =

(
a1 · (id⊗ id) a2 · (λδ0 ⊗ ϕ̂0)
a3 · (λ0 ⊗ ϕ0) a4 · (id⊗ id)

) ∣∣∣∣∣ ai ∈ Z, and f−1 = f̃

}
,

and we see that the injective homomorphism φ : Γ0(nd) ↪→ Sp′(A⊗ Γn)Sn associated
to λ0 is surjective.

5.1.12. Remark. — When n = 2, we have to replace Γ0(2d) by Γ0(d) ≃ Sp(A) in
Proposition 5.1.10.(ii), since the canonical map ϕ0 ∈ Hom(Γ2,Γ∨

2 ) from Definition 4.1.6
is not a generator, cf. Remark 4.1.10. More generally, without assuming End(A) = Z,
the action of S2 on Sp(A⊗ Γ2) is trivial, since any homomorphism of abelian varieties
commutes with negation.

Now we are interested in the case of an abelian variety A and its dual A∨ and
compute the Sn-invariants of Sp′(A⊗ Γn, A∨ ⊗ Γn).

5.1.13. Proposition. — Let n ≥ 3 be an integer.
(i) If the abelian variety A admits a symmetric isogeny (e.g. polarization) λ : A→A∨

of exponent e(λ) with
gcd(n, e(λ)) = 1,

then
Sp′(A⊗ Γn, A∨ ⊗ Γn)Sn ̸= ∅

is non-empty.
(ii) Conversely, assume that dim(A) = 2 and End(A) = Z, and let d2 denote the

minimal degree of a polarization of A which we assume to be separable, then we
have Sp′(A⊗ Γn, A∨ ⊗ Γn)Sn ̸= ∅ if and only if gcd(n, d) = 1.

(iii) In case Sp′(A⊗ Γn, A∨ ⊗ Γn)Sn is non-empty, it is a (right) torsor under the
group Sp′(A⊗ Γn)Sn .

Proof. — (ii) As above in the proof of Proposition 5.1.10, using the results of §§1.2
and 4.1, each f ∈ Sp′(A⊗ Γn, A∨ ⊗ Γn)Sn is of the form

f =
(
a1 · (λ0 ⊗ id) a2 · (id⊗ϕ̂0)
a3 · (id⊗ϕ0) a4 · (λδ0 ⊗ id)

)
,
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for some ai ∈ Z, where λ0 is the polarization of minimal degree. Here we identified A∨∨

with A and Γ∨∨
n with Γn even more aggressively than the convention in Definition 2.3.2

warrants, in order to suppress all evaluation isomorphisms from the notation. Otherwise
some instances of A would read A∨∨ and some instances of id would be ev−1 etc.
Using Propositions 1.2.26 and 4.1.16 and Theorem 1.2.23, we can write a symplectic
isomorphism f̃ ∈ Sp′(A∨ ⊗ Γn, A⊗ Γn) as

f̃ =
(

a4 · (λδ0 ⊗ id) −a2 · (id⊗ϕ̂0)
−a3 · (id⊗ϕ0) a1 · (λ0 ⊗ id)

)
.

Keeping in mind that

λδ0 ◦ λ0 = [d] and λ0 ◦ λδ0 = [d],

as well as
ϕ̂0 ◦ ϕ0 = n and ϕ0 ◦ ϕ̂0 = n,

the condition f̃ = f−1, i.e. f̃ ◦ f = id = f ◦ f̃ , becomes

det(f) := a1a4d− a2a3n = 1. (5.1.8)

Note that Equation (5.1.8) has a solution if and only if gcd(n, d) = 1.
(i) Since gcd(n, e(λ)) = 1, there exists a solution to

a1a4e(λ)− a2a3n = 1

with ai ∈ Z. Now the admissible symplectic isomorphism

f =
(
a1 · (λ⊗ id) a2 · (id⊗ϕ̂0)
a3 · (id⊗ϕ0) a4 · (λD ⊗ id)

)
witnesses that Sp′(A⊗ Γn, A∨ ⊗ Γn)Sn is non-empty.

(iii) The claim about torsors can be checked directly. In any case, it follows from
Proposition 3.2.14 in view of ¶6.1.2 below.

5.1.14. Remark. — For n = 2, the condition in Proposition 5.1.13 should read
gcd(1, d) = 1, which is vacuous. So we have Sp′(A⊗ Γ2, A

∨ ⊗ Γ2)S2 ̸= ∅, and under
the assumptions of (ii) it is a (right) torsor under Γ0(d).



90 Chapter 5. Invariant derived autoequivalences

5.2. Invariant derived autoequivalences in Orlov’s sequence

We consider Orlov’s fundamental short exact sequence for derived equivalences of
abelian varieties (Theorem 2.3.8) in the equivariant setup of the previous sections
and apply group cohomology to it in order to arrive at the proof of Theorem 3. This
section is original.

5.2.1. Induced action on Aut(Db(X)). — Let G be a group which acts on two
varieties X and Y . Then G acts from the left on Db(X) via

g.F := (g−1)∗F.

Accordingly, the diagonal action of G on Db(X × Y ) becomes

g.P = (g−1, g−1)∗P,

where by slight abuse of notation we write g for both both morphisms gX . : X → X

and gY . : Y → Y . Recall that for automorphisms g : X → X and h : Y → Y we have
by Proposition 2.1.12 the identity

FM(g,h)∗P = h∗ ◦ FMP ◦ g∗.

So for FMP ∈ Eq(Db(X),Db(Y )), we get

g.FMP = FM(g−1,g−1)∗P

= (g−1)∗ ◦ FMP ◦ g−1
∗

= (g−1)∗ ◦ FMP ◦ g−1
∗

= (g−1)∗ ◦ FMP ◦ g∗,

using equation (2.1.3) g−1
∗ ≃ g∗ for the isomorphism g.

5.2.2. Remark. — Let G act on three varieties X, Y and Z. The conjugation
action in ¶5.2.1 is clearly compatible with composition of Fourier–Mukai functors
FMP ∈ Eq(Db(X),Db(Y )) and FMP′ ∈ Eq(Db(Y ),Db(Z)). Also, if X and Y are
abelian varieties with a G-action by homomorphisms, then the induced action on

Sp′(X,Y ) ⊂ Isom(X ×X∨, Y × Y ∨)

is given by conjugation, cf. ¶3.1.2, and thus as well compatible with composition.

5.2.3. Proposition. — Let A and B be abelian varieties, then the maps in Seq. (2.3.3)

0→ Z× (A⊗ Γn)× (A⊗ Γn)∨ ι−→ Aut(Db(A⊗ Γn)) γA⊗Γn−−−−→ Sp′(A⊗ Γn)→ 0

and, more generally, the map

γA⊗Γn,B⊗Γn : Eq(Db(A⊗ Γn),Db(B ⊗ Γn))→ Sp′(A⊗ Γn, B ⊗ Γn)

are Sn-equivariant.

Proof. — We consider the more general situation where a group G acts on abelian
varieties X and X ′ by homomorphisms. The proposition then follows from the
specialization G = Sn and X = A⊗ Γn and X ′ = B ⊗ Γn.
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Let us first treat the map ι, which sends k ∈ Z to the shift functor [k], a point a ∈ X
to the pushforward (ta)∗ along translation by a, and a point α ∈ X∨ to the twist Pα⊗−
by the algebraically trivial line bundle Pα corresponding to α. The equalities below
refer to equality in Aut(Db(X)), i.e. natural isomorphisms of functors.

Let g ∈ G. On the one hand, G acts trivially on Z. On the other hand, we have

g.[k] = (g−1)∗ ◦ [k] ◦ g∗

= (g−1)∗ ◦ g∗ ◦ [k]
= [k].

First, we claim that g.(ta)∗ = (tg(a))∗. Indeed, using (ta)∗ = t∗
(−a), we have

g.(ta)∗ = (g−1)∗ ◦ t∗
(−a) ◦ g

∗

= (g ◦ t(−a) ◦ g−1)∗

= (t−g(a))∗

= (tg(a))∗.

Second, we claim that g.(Pα ⊗−) = Pg.α ⊗−. Indeed, recalling that g.α = (g−1)∨(α),
we have

g.(Pα ⊗−) = (g−1)∗ ◦ (Pα ⊗−) ◦ g∗

= ((g−1)∗Pα ⊗ (g−1)∗(−)) ◦ g∗

= (g−1)∗Pα ⊗−
= P(g−1)∨(α) ⊗−
= Pg.α ⊗−.

Now we treat the map γX,X′ : Eq(Db(X),Db(X ′)) → Sp′(X,X ′). By Exam-
ple 2.3.11.(ii) we have

γX(g∗) =
(
g−1 0
0 g∨

)
.

For Φ ∈ Eq(Db(X),Db(X ′)) let us write γX,X′(Φ) =
(
f1 f2
f3 f4

)
and calculate

γX,X′(g.Φ) = γX,X′((g−1)∗ ◦ Φ ◦ g∗)

= γX′((g−1)∗) · γX,X′(Φ) · γX(g∗)

=
(
g 0
0 (g−1)∨

)(
f1 f2
f3 f4

)(
g−1 0
0 g∨

)
=
(

g ◦ f1 ◦ g−1 g ◦ f2 ◦ g∨

(g−1)∨ ◦ f3 ◦ g−1 (g−1)∨ ◦ f4 ◦ g∨

)
.

This is exactly how G acts on Sp′(X,X ′). Indeed, recall that g ∈ G acts on a map ϕ

between two G-sets by g.ϕ = g.◦ϕ◦(g−1)., and the action of G on X∨ (respectively X ′∨)
is given by g.α = (g−1)∨(α). Considering Hom(X,X ′), Hom(X∨, X ′), Hom(X,X ′∨)
and Hom(X∨, X ′∨) produces exactly the formulas above.
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Using non-abelian group cohomology (see §3.2), we are ready to prove Theorem 3.

5.2.4. Theorem (Main Theorem 3). — Let A be an abelian variety of dimension
dim(A) = 2 over an algebraically closed field k of characteristic zero. Assume that
End(A) = Z, and let d2 denote the minimal degree of a polarization of A.

(i) For n ̸= 2, 4, we have an exact sequence of groups

0→ Z×A[n]→ Aut(Db(A⊗ Γn))Sn → Γ0(nd) δ−→ A[2][n].

(ii) For n = 4, we have an exact sequence of pointed sets (δ might not be a
homomorphism)

0→ Z×A[4]→ Aut(Db(A⊗ Γ4))S4 → Γ0(4d) δ−→ A[2]×A∨[2].

(iii) For n = 2, we have an exact sequence of groups

0→ Z×A[2]×A∨[2]→ Aut(Db(A⊗ Γ2))S2 → Γ0(d) ≃ Sp(A)→ 0.

By abuse of notation, we have identified, A with its group A(k) of k-rational points.

5.2.5. Remark. — The assumptions “dim(A) = 2” as well as “End(A) = Z” only
serve to be able to identify H0(Sn,Sp′(A⊗ Γn)) with certain Hecke congruence groups
in the sequences above, and for the analysis of the connecting map. The characteristic
zero assumption is inherited from Orlov’s sequence, cf. Theorem 2.3.8, where it
eventually comes from Bondal–Orlov’s criterion for Fourier–Mukai equivalences.

Proof. — Apply non-abelian group cohomology to Orlov’s short exact sequence

0→ Z× (A⊗ Γn)× (A⊗ Γn)∨ → Aut(Db(A⊗ Γn))→ Sp′(A⊗ Γn)→ 0 (5.2.1)

to get the exact sequence

0→ H0(Sn,Z× (A⊗ Γn)× (A⊗ Γn)∨)→ H0(Sn,Aut(Db(A⊗ Γn)))

→ H0(Sn,Sp′(A⊗ Γn)) δ−→ H1(Sn,Z× (A⊗ Γn)× (A⊗ Γn)∨).

For n = 3 and n ≥ 5, we have computed in §§4.2 and 5.1 (Propositions 4.2.1, 4.2.2
and 5.1.10, Theorem 4.2.9, and Remark 4.2.10)

– H0(Sn,Z) = Z
– H0(Sn, A⊗ Γn) ≃ A[n]
– H0(Sn, (A⊗ Γn)∨) = 0
– H0(Sn,Sp′(A⊗ Γn)) ≃ Γ0(nd)

– H1(Sn,Z) = 0
– H1(Sn, A⊗ Γn) ≃ A[2][n]
– H1(Sn, (A⊗ Γn)∨) = 0

For n = 4 the only difference is that

H1(S4, (A⊗ Γ4)∨) ≃ A∨[2].

The case n = 2 was treated by Ploog in [Plo05, Prop. 4.8]; it also follows from our
remarks and computations in §4.2. The differences are that

– H0(S2, (A⊗ Γ2)∨) ≃ A∨[2],
– H0(S2,Sp′(A⊗Γ2))=Sp′(A)≃Γ0(d),

– H1(S2, A⊗ Γ2) = 0.
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It is left to show that, for even n ̸= 4, the connecting map δ : Γ0(nd)→ A[2] is a
group homomorphism, which we are going to show using Proposition 3.2.7. Denote the
equivalence associated to (a, α) ∈ (A⊗ Γn)× (A⊗ Γn)∨ by Φ(a,α) := (ta)∗ ◦ (Pα ⊗−).
For any Φ ∈ Aut(Db(A⊗ Γn)) we have by (2.3.6) that

Φ ◦ Φ(a,α) ◦ Φ−1 ≃ Φγ(Φ)(a,α).

So for f ∈ Sp′(A⊗ Γn) with γ(Φ) = f , we have for the action described in ¶3.2.6

Φ(a,α).f := Φ−1 ◦ Φ(a,α) ◦ Φ ≃ Φf−1(a,α).

This means that the right action of Sp′(A⊗ Γn) on (A⊗ Γn)× (A⊗ Γn)∨ is

(a, α).f = f−1(a, α).

Taking shift autoequivalences into account, the action is (k, a, α).f = (k, f−1(a, α)), so
the action of Sp′(A⊗Γn) on Z (and anyways on H1(Sn,Z) = 0) is already trivial. Now
assume f ∈ Sp′(A⊗Γn)Sn , and take any class [(a, α)] ∈ H1(Sn, (A⊗Γn)× (A⊗Γn)∨),
represented by a cocycle (a, α) : Sn → (A⊗ Γn)× (A⊗ Γn)∨. When n ̸= 4, we know
that H1(Sn, (A⊗ Γn)∨) = 0, so we can take α = 0. The action reads now

[(a, 0)].f = [(f1 ◦ a, f3 ◦ a)] = [(f1 ◦ a, 0)],

where we write f−1 =
(
f1 f2
f3 f4

)
. Since f−1 ∈ Sp′(A⊗ Γn)Sn , we have f1 = k1 · id for

some k1 ∈ Z by Proposition 5.1.10, and similarly for f2, f3, and f4. We claim that
k1 is odd, since n is even. Indeed, identifying f−1 with an element of Γ0(nd), the
condition

det(f−1) = k1k4 − ndk3k2 = 1
forces k1 to be odd since n is already even. Finally, using that H1(Sn, A⊗ Γn) ≃ A[2]
is 2-torsion, we see that f acts trivially. In conclusion, δ is a crossed homomorphism
for the trivial action, which makes it a group homomorphism.

5.2.6. — Let us discuss the connecting map δ : Γ0(4d) → A[2]× A∨[2] in the case
where n = 4. Assume f ∈ Sp′(A⊗ Γn)Sn and continue with the notation and setup
from the proof of Theorem 5.2.4. We have the action(

a

α

)
.f =

(
f1 f2
f3 f4

)(
a

α

)
=
(
f1 ◦ a+ f2 ◦ α
f3 ◦ a+ f4 ◦ α

)
.

The following proposition explains that this action is in general non-trivial. In
particular, when d is odd, δ will not be a homomorphism unless im(δ) ⊂ A[2]× {0}.

5.2.7. Proposition. — Continuing with the notation from ¶5.2.6 and the proof of
Theorem 5.2.4, denote by (fi)∗ the induced maps on first group cohomology. We have

(i) (f1)∗ = id as endomorphisms of H1(Sn, A⊗ Γn),
(ii) (f4)∗ = id as endomorphisms of H1(Sn, (A⊗ Γn)∨),
(iii) (f3)∗ = 0 as morphisms H1(Sn, A⊗ Γn)→ H1(Sn, (A⊗ Γn)∨),
(iv) f2 = k2 · (λδ0 ⊗ ϕ̂0) as morphisms (A⊗ Γn)∨ → A⊗ Γn, for some k2 ∈ Z, and

ker((λδ0 ⊗ ϕ̂0)∗) ≃ ker(λδ0 : A∨[2]→ A[2]).
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Proof. — (i) and (ii): As before, the condition det(f−1) = 1 yields that we can view f1
and f4 as odd integers, so that we get the identities of cohomology classes [f1 ◦a] = [a]
and [f4 ◦ α] = [α].

(iii) We have f3 = k3 · (λ0 ⊗ ϕ0) for some k3 ∈ Z by Proposition 5.1.10. We have
by Proposition 4.1.8 a short exact sequence

0→ A[n] ∆−→ A⊗ Γn
id ⊗ϕ0−−−−→ A⊗ Γ∨

n → 0

Applying cohomology and using our calculations in Corollary 4.2.6, we get

H1(Sn, A[n]) H1(Sn, A⊗ Γn) H1(Sn, A⊗ Γ∨
n)

Hom(Sn, A[n]) A[2][n],

∆∗

∼−→

(id ⊗ϕ0)∗

∼−→
where the first (vertical) isomorphism recognizes a cocycle g 7→ a(g) as a homomor-
phism, and the second isomorphism sends a cocycle g 7→ (ai(g))i to an(τ) for some
transposition τ ∈ Sn−1 ⊂ Sn. Using

Hom(Sn, A[n]) ≃ Hom(Sn/An, A[n]) ≃ A[n][2]

we see that ∆∗ is surjective. Hence (id⊗ϕ0)∗ = 0, which implies (λ0 ⊗ ϕ0)∗ = 0.
(iv) As before, by Proposition 5.1.10 we can write the map f2 as f2 = k2 · (λδ0 ⊗ ϕ̂0)

for some k2 ∈ Z. We claim that

ker((λδ0 ⊗ id)∗ : H1(S4, A
∨ ⊗ Γ4)→ H1(S4, A⊗ Γ4))

is isomorphic to
ker(λδ0 : A∨[2]→ A[2]).

For this, note that the homomorphism (λδ0 ⊗ id)∗ becomes λδ0 under the identifications
H1(S4, A

∨ ⊗ Γ4) ≃ A∨[2] and H1(S4, A ⊗ Γ4) ≃ A[2] of Corollary 4.2.6 (the latter
identification is, for concreteness, induced from the composition of the inclusion
Γn ⊂ Zn followed by projection onto the last coordinate and finally evaluation at a
transposition.)

Finally we claim that

(id⊗ϕ̂0)∗ : H1(S4, A
∨ ⊗ Γ∨

4 )→ H1(S4, A
∨ ⊗ Γ4)

is an isomorphism. For notational reasons we use A in place of A∨ in the argument.
By Proposition 4.1.8 we have an exact sequence

0→ A[n] ∆−→ A[n]⊗ Γn
ϕ0−→ A[n]⊗ Γ∨

n
Σ−→ A[n]→ 0,

so we get

H1(Sn, (A[n]⊗ Γn)/A[n]) (ϕ0)∗−−−→ H1(Sn, A[n]⊗ Γ∨
n) Σ∗−−→ H1(Sn, A[n])

[f : Sn → A[n]⊗ Γ∨
n ] 7→ [Σ ◦ f ].

For n = 4, the middle and right groups are isomorphic to A[2], where the latter
isomorphism is given by evaluation at a transposition. One can (tediously) check
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using the Coxeter–Moore presentation of the symmetric group (Example 3.1.8), that
for a ∈ A[2] the assignment

f((1 2)) := [(0, 0, a, 0)]
f((2 3)) := [(a, 0, 0, 0)]
f((3 4)) := [(0, a, 0, 0)]

extends to a 1-cocycle on S4, cf. ¶3.1.7 and Example 3.1.8. (See Listings A.1 and A.2 for
a computer-based verification.) By construction, these cocycles witness the surjectivity
of Σ∗. So Σ∗ becomes an isomorphism and (ϕ0)∗ = 0. By Proposition 4.1.13 we have
an exact sequence

0→ A[n] ∆−→ A[n]⊗ Γn
ϕ0−→ A⊗ Γ∨

n
ϕ̂0−→ A⊗ Γn → 0.

It follows that the map (ϕ0)∗ in the induced sequence

H1(Sn, (A[n]⊗ Γn)/A[n]) (ϕ0)∗−−−→ H1(Sn, A⊗ Γ∨
n) (ϕ̂0)∗−−−→ H1(Sn, A⊗ Γn)

is the zero map as well, since it factors as the previous map (ϕ0)∗ followed by the map
induced by the inclusion A[n] ⊂ A. We conclude that (ϕ̂0)∗ is injective. For n = 4 its
domain and codomain are isomorphic to A[2], so it is an isomorphism.

5.2.8. Question. — For n ̸= 4, we have seen that ker(δ) ⊂ Γ0(nd) is a normal
subgroup, which can be written as the intersection of at most 4 subgroups of index 2,
since A[2] is abstractly isomorphic to (Z/2Z)4. (N.B. For n = 4, the index is still
bounded by 16, since the cosets are the fibers of δ.) We wonder if ker(δ) ⊂ Γ0(nd) is
a congruence subgroup.





CHAPTER 6

Equivariant derived equivalences

6.1. Invariant derived equivalences via equivariant torsors

We use the notion of equivariant torsors explained in §3.2, and specialize the
discussion to the torsors that are relevant to our study of Fourier–Mukai equivalences
of generalized Kummer varieties. This section is original.

6.1.1. Situation. — In this section, we work over an algebraically closed field k of
characteristic zero.

6.1.2. — Let A and B be abelian varieties, then Sp′(A,B) is a pseudo-torsor under
the group Sp′(A), where the right action is afforded by function composition. Indeed,
use that

Sp′(A,B) ⊂ Isom(A×A∨, B ×B∨) and Sp′(A) ⊂ Aut(A×A∨)

are subsets, and that
(g ◦ f)∼ = f̃ ◦ g̃

for f ∈ Sp′(A) and g ∈ Sp′(A,B), where the operation (−)∼ is as in Definition 2.3.2.
Similarly the set Eq(Db(A),Db(B)) of isomorphism classes of derived equivalences
is a pseudo-torsor under the group Aut(Db(A)), where the right action is given by
functor composition.

Recall that the morphism γA,B : Eq(Db(A),Db(B)) → Sp′(A,B) from Theo-
rem 2.3.8 is an equivariant map of pseudo-torsors with respect to the homomor-
phism γA : Aut(Db(A))→ Sp′(A), i.e.

γA,B(Φ′ ◦ Φ) = γA,B(Φ′) ◦ γA(Φ),

or diagrammatically

γA,B : Eq(Db(A),Db(B)) Sp′(A,B)

γA : Aut(Db(A)) Sp′(A).

↶ ↶
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6.1.3. — We specialize the situation further and consider first the Sn-equivariant
Sp′(A⊗ Γn)-torsor

T1 := Sp′(A⊗ Γn, A∨ ⊗ Γn).
The actions are indeed compatible, since Sn acts by conjugation σ.f = σ. ◦ f ◦ (σ−1).
on homomorphism sets, and for σ ∈ Sn, f ∈ Sp′(A⊗ Γn), and g ∈ T1 we have

σ.(g ◦ f) = σ. ◦ g ◦ f ◦ (σ−1). = σ. ◦ g ◦ (σ−1). ◦ σ. ◦ f ◦ (σ−1). = (σ.g) ◦ (σ.f).

Note that T1 is non-empty since A∨ ⊗ Γn ≃ (A×(n−1))∨ is the dual abelian variety of
A⊗ Γn ≃ A×(n−1); a concrete witness is the admissible symplectic isomorphism

g =
(

0 id
− id 0

)
∈ T1,

which corresponds to the Fourier–Mukai equivalence given by the Poincaré bundle by
Example 2.3.11.

Second, consider the Sn-equivariant Aut(Db(A⊗ Γn))-torsor

T2 := Eq(Db(A⊗ Γn),Db(A∨ ⊗ Γn)).

Again, the actions are compatible since Sn acts by conjugation, and T2 is non-empty
by the surjectivity of

γ(A⊗Γn),(A∨⊗Γn) : T2 → T1.

6.1.4. Proposition. — Let A be an abelian variety over k. Then the set of fixed
points Eq(Db(A⊗Γn),Db(A∨⊗Γn))Sn is a pseudo-torsor under Aut(Db(A⊗Γn))Sn .

Proof. — This is a direct application of Proposition 3.2.14 to the Sn-equivariant
torsor T2.

6.1.5. Theorem. — Let n ≥ 3, and let A be an abelian variety over k endowed with
a symmetric isogeny (e.g. polarization) λ : A→ A∨ of exponent e.

(i) Assume n is odd. Then gcd(n, e) = 1 implies

Eq(Db(A⊗ Γn),Db(A∨ ⊗ Γn))Sn ̸= ∅. (6.1.1)

(ii) Conversely, if dim(A) = 2 and End(A) = Z, and λ is taken to be the polarization
of minimal degree, then (6.1.1) implies gcd(n, e) = 1.

Proof. — Using Proposition 3.2.15 we associate to the torsor T1 the cohomology class

[T1] ∈ H1(Sn,Sp′(A⊗ Γn))

and to the torsor T2 the class

[T2] ∈ H1(Sn,Aut(Db(A⊗ Γn))).

Then the map γA⊗Γn
: Aut(Db(A⊗Γn))→ Sp′(A⊗Γn)) induces a map of non-abelian

cohomology sets

(γA⊗Γn)∗ : H1(Sn,Aut(Db(A⊗ Γn)))→ H1(Sn,Sp′(A⊗ Γn)),

which sends [T2] to [T1]. Indeed, we know by Proposition 5.2.3 that

γ(A⊗Γn),(A∨⊗Γn) : T2 → T1
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is an Sn-equivariant map which is equivariant relative to γA⊗Γn , so we can apply
Proposition 3.2.17.

(i) We have seen that gcd(n, e) = 1 implies T Sn
1 ̸= ∅, the latter being equivalent to

the condition [T1] = 0, cf. Propositions 3.2.15 and 5.1.13, thus

[T2] ∈ ker((γA⊗Γn)∗).

Using the cohomology sequence associated to Sequence (5.2.1)

0→ Z× (A⊗ Γn)× (A⊗ Γn)∨ → Aut(Db(A⊗ Γn))→ Sp′(A⊗ Γn)→ 0,

this means that [T2] is in the image of H1(Sn,Z× (A⊗ Γn)× (A⊗ Γn)∨).(1) But by
Theorem 4.2.9 for n odd, the latter is zero. So we have

[T2] = 0

and thus T Sn
2 ̸= ∅ by Proposition 3.2.15.

(ii) We have seen in Proposition 5.1.13 that in this case the condition gcd(n, e) = 1
is equivalent to T Sn

1 ̸= ∅, and to [T1] = 0 by Proposition 3.2.15. Finally, T Sn
2 ≠ ∅

implies [T2] = 0, so
[T1] = (γA⊗Γn

)∗[T2] = 0.

6.1.6. Remark. —
(i) In part (ii) of Theorem 6.1.5, we can take λ : A→ A∨ to be the polarization of

minimal degree d. Then e(λ)2 = d, and the numerical condition can be read as
“gcd(n, d) = 1”.

(ii) The assumptions on the ground field k are inherited from Orlov’s theorem
(Theorem 2.3.8). Also the vanishing of H1(Sn, A(k)⊗ Γn) in the proof above
uses that A(k) is n-divisible, which is fine when k is algebraically closed.

We are going to use Ploog’s method, recalled in §2.2, to enhance an invariant
derived equivalence to an equivalence of equivariant derived categories.

6.1.7. — Theorem 2.2.13 specialized to the group G = Sn yields the diagram

Eq(Db(A⊗ Γn),Db(A∨ ⊗ Γn))hSn

Eq(Db(A⊗ Γn),Db(A∨ ⊗ Γn))Sn Eq(Db
Sn

(A⊗ Γn),Db
Sn

(A∨ ⊗ Γn)),

for infSn×Sn
∆Sn

which has the following properties.
(i) For n ≥ 3 the inflation map infSn×Sn

∆Sn
is injective, since the center Z(Sn) = 1 is

trivial, cf. ¶3.1.31.
(ii) For n = 3 the forgetful map for is surjective, since the Schur multiplier

H2(S3,k×) = 0 is trivial, cf. Proposition 3.1.29 and Example 3.1.30.
Furthermore, since Hom(Sn,k×) = {id, sgn}, an equivariant structure on an invariant
Fourier–Mukai kernel of an equivalence is unique up to the sign representation of Sn.

(1)As a reminder, in the kernel term of Orlov’s short exact sequence and the sequences derived from
it, like Seq. (5.2.1), one denotes the groups of k-rational points A(k) and A∨(k) just by A and A∨.
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Putting everything together, we are ready to prove the main theorem for generalized
Kummer fourfolds. In §6.2 we will explain how to treat generalized Kummer varieties
of dimension 2m with m even.

6.1.8. Theorem (Main Theorem 1 Part 1). — Let A be an abelian surface over
an algebraically closed field k of characteristic zero, which admits a symmetric isogeny
(e.g. polarization) λ : A→ A∨ of exponent e such that gcd(3, e) = 1. Then the derived
categories

Db(Kum2(A)) and Db(Kum2(A∨))
of 4-dimensional generalized Kummer varieties are derived equivalent.

Proof. — We apply the method of Ploog recalled in ¶6.1.7 above. Theorem 6.1.5
instantiated with n = 3 provides a S3-invariant derived equivalence

FME : Db(A⊗ Γ3) ∼−→ Db(A∨ ⊗ Γ3),

i.e. FME ∈ Eq(Db(A⊗ Γ3),Db(A∨ ⊗ Γ3))S3 . Since the Schur multiplier

H2(S3,k×) = 0

is zero, we can enhance the Fourier–Mukai kernel E to an equivariant object

(E, ϕ) ∈ Db
∆S3

((A⊗ Γ3)× (A∨ ⊗ Γ3)),

thus providing an element in Eq(Db(A⊗ Γ3),Db(A∨ ⊗ Γ3))hS3 . Now the inflation of
the equivariant kernel (E, ϕ) along the diagonal inclusion ∆S3 ⊂ S3 × S3 provides an
element of Eq(Db

S3
(A⊗ Γ3),Db

S3
(A∨ ⊗ Γ3)), i.e. a kernel for an equivalence

Db
S3

(A⊗ Γ3) ∼−→ Db
S3

(A∨ ⊗ Γ3).

Finally, as explained in Proposition 1.1.14, we have

Kum2(A) ≃ HilbS3(A⊗ Γ3),

and by the derived McKay-correspondence we know

Db(HilbS3(A⊗ Γ3)) ≃ Db
S3

(A⊗ Γ3),

and similarly for A∨ instead of A, cf. Proposition 2.2.21.

6.1.9. Remark. — We want to discuss Stellari’s theorem (Theorem 2.3.17) and
the case n = 2 in this remark. Let A and B be abelian varieties, and assume n is
odd or n = 2. Consider the equivariant pseudo-torsors T1 := Sp′(A ⊗ Γn, B ⊗ Γn)
and T2 := Eq(Db(A⊗ Γn),Db(B ⊗ Γn)). If T Sn

1 ̸= ∅, then the cohomology class [T1]
vanishes. Since H1(Sn,Z× (A⊗ Γn)× (A⊗ Γn)∨) = 0 by Theorem 4.2.9, we see as
above that [T2] = 0, i.e. T Sn

2 ̸= ∅. So

γSn

A⊗Γn,B⊗Γn
: Eq(Db(A⊗ Γn),Db(B ⊗ Γn))Sn → Sp′(A⊗ Γn, B ⊗ Γn)Sn

is an equivariant morphism of torsors, relative to the homomorphism

γSn

A⊗Γn
: Aut(Db(A⊗ Γn))Sn → Sp′(A⊗ Γn)Sn .
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The latter map is surjective by Theorem 5.2.4 and Remark 5.2.5, so the former map
is surjective as well. If n = 2, one notes that T S2

1 = T1 since S2 ≃ Z/2Z acts via
conjugation by − id = γ([−1]∗) on symplectic isomorphisms. Hence

γS2
A⊗Γ2,B⊗Γ2

: Eq(Db(A⊗ Γ2),Db(B ⊗ Γ2))S2 → Sp′(A⊗ Γ2, B ⊗ Γ2)S2 = Sp′(A,B)

is surjective. Finally, recall that the set of symplectic isomorphisms on the right hand
side is non-empty if and only if A and B are derived equivalent. Also recall that, for
n = 2 or n = 3, Ploog’s method, cf. §2.2, can be applied without any difficulties due
to the vanishing of the Schur multipliers. In conclusion, we have recovered [Ste07,
Prop. 3.1] and a proof of Theorem 2.3.17.
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6.2. Equivariant semi-homogeneous vector bundles and Orlov’s construction

In this section we prove the remaining cases of Theorem 1. This section is original but
builds upon Orlov’s constructions in [Orl02] and Mukai’s theory of semi-homogeneous
vector bundle in [Muk78].

6.2.1. Theorem (Main Theorem 1 Part 2). — Let n ≥ 5 be an odd integer and
let A be an abelian surface over an algebraically closed field of characteristic zero,
which admits a symmetric isogeny (e.g. polarization) λ : A→ A∨ of exponent e such
that gcd(e, n) = 1. Then the two derived categories

Db(Kumn−1(A)) and Db(Kumn−1(A∨))

of 2(n− 1)-dimensional generalized Kummer varieties are derived equivalent.

6.2.2. Situation. — Let n ≥ 2 be a natural number. We work over an algebraically
closed field k, and assume that char(k) does not divide n.

We study Orlov’s construction (Construction 2.3.12) concerning preimages of the
map γ : Eq(A⊗Γn, A∨⊗Γn)→ Sp(A⊗Γn, A∨⊗Γn) from an equivariant perspective,
with the goal to construct an equivariant Fourier–Mukai kernel out of an invariant
symplectic isomorphism. On the way we will make use of Mukai’s theory of semi-
homogeneous vector bundles as recalled in §1.3.

For the readers convenience we reproduce here the steps of Construction 2.3.12.

6.2.3. Construction. — Let A and B be abelian varieties. The following steps
construct a preimage under Orlov’s map γ : Eq(Db(A),Db(B)) → Sp(A,B) of a
symplectic isomorphism as in step (1).

(1) Consider some symplectic isomorphism

f =
(
f1 f2
f3 f4

)
∈ Sp(A,B)

and assume that f2 : A∨ → B is an isogeny.
(2) Denote by f−1

2 the inverse isogeny of f2 with rational coefficients, and subse-
quently define the map g ∈ Hom(A×B,A∨ ×B∨)⊗Z Q by

g :=
(
f−1

2 ◦ f1 −f−1
2

−(f−1
2 )∨ f4 ◦ f−1

2

)
.

(3) Since f is symplectic, the map g is symmetric, so there exists a (unique) element

µ := [L]⊗ 1
ℓ
∈ NS(A×B)⊗Z Q.

such that g = φL/ℓ, cf. ¶1.2.11.
(4) Take the semi-homogeneous vector bundle

F := [ℓ]∗(L⊗ℓ)

on A×B of slope µ(F) = µ, cf. Proposition 1.3.7.(i)
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(5) Consider a Jordan–Hölder filtration

0 = F0 ⊂ · · · ⊂ Fk = F,

where each graded piece Ei = Fi/Fi−1 is a simple semi-homogeneous vector
bundle of slope µ(Ei) = µ, cf. Proposition 1.3.7.(ii).

(6) Finally, take any of the vector bundles Ei as the kernel of a Fourier–Mukai
functor

FMEi
: Db(A)→ Db(B).

Now we specialize our situation to the equivariant setting of the previous sections,
that is, we let A0 be an abelian surface and take

A = A0 ⊗ Γn and B = A∨
0 ⊗ Γn

with their Sn-action. We follow the steps of Orlov’s and Mukai’s constructions with
the plan to endow L in step (3) with an equivariant structure which we can carry
through the remaining steps to an equivariant structure on some Ei in step (6).

6.2.4. — Ad (1): Let A0 be an abelian surface over k, and let λ : A0 → A∨
0 be a

symmetric isogeny of exponent e(λ). We assume that gcd(e(λ), n) = 1, so we can pick
integers n3 and n4 which solve the equation

n4e(λ)− n3n = 1.

Now recall the maps ϕ0 and ϕ̂0 from §4.1 and consider the element

f :=

 λ ϕ̂0

n3ϕ0 n4λ
D

 ∈ Sp(A0 ⊗ Γn, A∨
0 ⊗ Γn).

Note that indeed ϕ̂0 := id⊗ϕ̂0 : A∨
0 ⊗ Γ∨

n → A∨
0 ⊗ Γn is an isogeny.

6.2.5. — Ad (2): Recall that by construction we have

(ϕ̂0)−1 = 1
n
ϕ0 ∈ Hom(A∨

0 ⊗ Γn, A∨
0 ⊗ Γ∨

n)⊗Z Q,

and that ϕ∨
0 = ϕ0, so we get

g=

 ϕ̂−1
0 ◦ λ −ϕ̂−1

0

−(ϕ̂−1
0 )∨ n4λ

D ◦ (ϕ̂0)−1

=

 1
nλ⊗ ϕ0 − 1

n id⊗ϕ0

− 1
n id⊗ϕ0

n4
n λ

D ⊗ ϕ0

=

 λ − id

− id n4λ
D

⊗ 1
n
ϕ0.

6.2.6. Proposition. — Let g be defined as in ¶6.2.5, then there exists a line bun-
dle L ∈ Pic((A0 ⊗ Γn)× (A∨

0 ⊗ Γn)) which is
(i) Sn-equivariant, and satisfies
(ii) φL = ng.

Proof. — The next proposition (Proposition 6.2.7) applied to X = A0 × A∨
0 shows

that we can take
L = L⊠n

0

∣∣∣
(A0×A∨

0 )⊗Γn

,
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where L0 ∈ Pic(A0 ×A∨
0 ) satisfies

φL0 =
(

λ − id
− id n4λ

D

)
.

In particular, L becomes an Sn-equivariant line bundle since the box-product

L⊠n
0 = pr∗

1L0 ⊗ · · · ⊗ pr∗
nL0 ∈ Pic((A0 ×A∨

0 )×n)

carries a canonical Sn-equivariant structure, cf. Example 2.2.4.

6.2.7. Proposition. — Let X be an abelian variety and let L0 ∈ Pic(X) be a line
bundle. Then we have the equality

φ(L⊠n
0 |X⊗Γn) = φL0 ⊗ ϕ0 : X ⊗ Γn → X∨ ⊗ Γ∨

n .

Proof. — Let i : X ⊗ Γn ↪→ X ⊗ Zn ≃ Xn be the closed immersion induced by the
inclusion Γn ↪→ Zn. Consider the diagram

X ⊗ Γn (X ⊗ Γn)∨ X∨ ⊗ Γ∨
n

Xn (Xn)∨ (X∨)n.

i

φ
i∗(L⊠n

0 ) ∼

φ
L⊠n

0

φL0 ×···×φL0

i∨

∼

The left square commutes by Diagram (1.2.2) in ¶1.2.11. For the right square and
lower triangle see ¶4.1.5 and Corollary 5.1.7, which explain in particular that Σ∨ = ∆

and i∨ becomes the quotient projection in the definition of Γ∨
n , cf. Definition 4.1.3.

It is clear that the square

X ⊗ Γn X∨ ⊗ Γn

Xn (X∨)n
i

φL0 ⊗id

φL0 ×···×φL0

commutes. Finally, the composition

X∨ ⊗ Γn ↪→ (Xn)∨ ↠ X∨ ⊗ Γ∨
n

equals
id⊗ϕ0 : X∨ ⊗ Γn → X∨ ⊗ Γ∨

n

by the definition of ϕ0, cf. Definition 4.1.6. Putting these facts together yields the
claimed result.

6.2.8. — Ad (3): The symmetric map g from ¶6.2.5 corresponds to

µ := 1
n

[L] ∈ NS((A0 ⊗ Γn)× (A∨
0 ⊗ Γn))⊗Q

where L ∈ Pic((A0 ⊗ Γn)× (A∨
0 ⊗ Γn)) is the Sn-equivariant line bundle from Proposi-

tion 6.2.6, which satisfies φL = ng.
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6.2.9. — Ad (4): Now we consider the semi-homogeneous vector bundle

F := [n]∗L⊗n.

It has slope µ(F) = µ by Proposition 1.3.7. Recall that the Sn-equivariant structure
on L induces one on L⊗n, cf. ¶2.2.5. Also F inherits an Sn-equivariant structure
from L⊗n as the push-forward along the Sn-equivariant morphism [n], cf. ¶2.2.5.

6.2.10. — Ad (5): Our desired Sn-equivariant simple semi-homogeneous vector
bundle E will be a graded pieces of a Jordan–Hölder filtration of F. But we face the
problem that the equivariant structure of F does not readily restrict to one of its
graded pieces. Studying F and its Jordan–Hölder filtrations leads to the following
information (Proposition 6.2.13).

6.2.11. Situation. — From now on we use the abbreviation

X := (A0 ⊗ Γn)× (A∨
0 ⊗ Γn).

So we have g := dim(X) = 4(n− 1), and recall that we have #X[n] = n2g.

6.2.12. — Recall Mukai’s groups Φµ = im((n, φL) : X → X × X∨) as well as
Σµ = ker(pr1 : Φµ → X) from Definition 1.3.4, where µ = 1

n [L] and pr1 is the
restriction to Φµ of the first coordinate projection. As in ¶1.3.6, we can view Σµ as a
subgroup of X∨, and as such it is described as the image

Σµ = φL(X[n]) ⊂ X∨[n].

6.2.13. Proposition. — The semi-homogeneous vector bundle F of slope µ con-
structed in ¶6.2.9 admits a split Jordan–Hölder filtration, explicitly,

F ≃
⊕

α∈X∨[n]/Σµ

(E0 ⊗ Pα)⊕n2n−4
,

where E0 is a simple semi-homogeneous vector bundle of slope µ.

We need a bit of preparation before proving Proposition 6.2.13 just after Re-
mark 6.2.17. In particular, we need to calculate the rank of the vector bundles E0.

6.2.14. — As explained in ¶1.3.14, we can rearrange a Jordan–Hölder filtration of F
into the form

F ≃
⊕
j∈J

Uj ⊗ Ej

where the simple semi-homogeneous vector bundles Ej of slope µ are pairwise distinct,
and the Uj are unipotent vector bundles, cf. Definition 1.3.11.

6.2.15. Proposition. — The group X∨[n] acts on the set (of isomorphism classes)
{Ej}j∈J via

α.Ej := Ej ⊗ Pα,

where Pα ∈ Pic0(X) is the associated line bundle to α ∈ X∨[n]. The stabilizer of the
action is

Stab(Ej) = Σµ.
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Proof. — We have by the equality [n]∗Pα ≃ Pnα ≃ P0 ≃ OX and the projection
formula that

F ⊗ Pα = ([n]∗L⊗n)⊗ Pα ≃ [n]∗(L⊗n ⊗ [n]∗Pα) ≃ [n]∗(L⊗n) = F.

Recalling that the multiset of associated graded pieces of a Jordan–Hölder filtration is
unique, this means that X∨[n] acts on the set (of isomorphism classes) {Ej}j∈J via

α.Ej := Ej ⊗ Pα.

Next we compute the stabilizers of this action. We can write each Ej as E0 ⊗ Pαj

for some αj ∈ X∨ by Proposition 1.3.8, so

Stab(Ej) = Stab(E0 ⊗ Pαj ) = Stab(E0) = {α ∈ X∨[n] | E0 ≃ E0 ⊗ Pα}.

By ¶1.3.6 this is nothing else than Σµ ∩X∨[n] = Σµ, cf. Definition 1.3.4.

6.2.16. Proposition. — Let µ ∈ NS(X)⊗Q as constructed in ¶6.2.8, and let E be
a simple semi-homogeneous vector bundle on X of slope µ. Then the rank of E is

rk(E) = n2n−4, and #Σµ = n4n−8.

Proof. — By Proposition 1.3.8 we have rk(E)2 = deg(pr1). Now from the equation

Σµ = ker(pr1) = {(a, α) ∈ Φµ | a = 0} = {(nx, φL(x)) | nx = 0, x ∈ X}

we get a short exact sequence

0→ X[n] ∩ ker(φL)→ X[n] φL−−→ Σµ → 0,

and rk(E)2 = #φL(X[n]).
Regarding the kernel, let (a, α) ∈ X[n] = ((A0 ⊗ Γn) × (A∨

0 ⊗ Γn))[n], then the
condition φL(a, α) = 0 becomes{

ϕ0(λ(a)) = ϕ0(α)

ϕ0(a) = n4ϕ0(λD(α))

(6.2.1)

(6.2.2)

by φL = ng and the definition of g. Here we have, by abuse of notation, implicitly
applied the maps λ and λD entry-wise to tuples. Define α′ := λ(a). Since

ker(ϕ0|A∨
0 ⊗ Γn) = ∆(A∨

0 [n])

we can write α = α′ + ∆(α0) for some α0 ∈ A∨
0 [n] by (6.2.1). Similarly, we see after

substituting into (6.2.2) that

n4λ
D(α′ + ∆(α0)) = a+ ∆(a0)

for some a0 ∈ A0[n]. After substituting α′ = λ(a), the left hand side of this equals

n4e(λ)a+ n4λ
D(∆(α0)) = n4e(λ)a+ ∆(n4λ

D(α0)).

Using n4e(λ)− 1 = n3n we arrive at

0 = n3na = ∆(a0 − n4λ
D(α0)),
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which always admits a solution a0 ∈ A0[n]. We conclude that

ker(φL) ∩X[n] = (A0 ⊗ Γn)[n]×∆(A∨
0 [n]).

We can now calculate the cardinalities

#(ker(φL) ∩X[n]) = n4(n−1) · n4 = n4n,

so that we finally get

#φL(X[n]) = n8(n−1)/n4n = n4n−8

and rk(E) = n2n−4.

6.2.17. Remark. — Note that the rank of F is

rk(F) = rk([n]∗L⊗n) = deg([n] : X → X) = n8(n−1).

In particular, we see that our F is definitely not simple. Instead we see that the length
N of any Jordan–Hölder filtration of F will be

N = n8(n−1)/n2n−4 = n6n−4.

Further we see that each orbit of the action in Proposition 6.2.15 contains exactly
n4n = n8(n−1)/n4n−8 elements.

Proof of Proposition 6.2.13. — We aim to apply the splitting criterion for unipotent
vector bundles from Proposition 1.3.12. For this we calculate dim End(F) in two ways:
First, we abbreviate

L̃ := L⊗n

where L is as in the construction of F. Then we have using ¶1.2.14 that

Hom(F,F) ≃ Hom([n]∗L̃, [n]∗L̃) ≃ Hom([n]∗[n]∗L̃, L̃) ≃ Hom(
⊕

x∈X[n]

t∗
xL̃, L̃),

and for x ∈ X[n] we calculate

Hom(t∗
xL̃, L̃) ≃ Hom(L̃⊗ Pφ

L̃
(x), L̃) ≃ Hom(Pφ

L̃
(x),OX) ≃ H0(X,OX) ≃ k,

since φ
L̃

= nφL implies φ
L̃

(x) = φL(nx) = φL(0) = 0. We conclude that

dim End(F) = #X[n] = n8(n−1).

Second, we take on the viewpoint that F ≃
⊕

Uj ⊗ Ej . Using Hom(Ej ,Ej) = k
and Hom(Ej ,Ej′) = 0 for j ̸= j′, cf. ¶1.3.10, we get that

dim End(F) =
∑
j∈J

dim End(Uj).

Define rj := rk(Uj) and keep Remark 6.2.17 in the following calculations in mind.
By Proposition 6.2.16 we have

n8(n−1) = rk(F) =
∑
j

rj rk(Ej) = n2n−4
∑
j

rj ,

which implies that the rj ’s give a partition of N = n6n−4. Now we want to take the
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action from Proposition 6.2.15 into account. Pick a representative Ej from each orbit
and denote the set of indices of these elements by J0 ⊂ J . Thus the rj ’s for j ∈ J0
constitute a partition of

N/(#elements in an orbit) = n6n−4/n4n = n2n−4.

Making the abbreviation ej := dim End(Uj), we get from the considerations above
that

dim End(F) = n4n
∑
j∈J0

ej

by Remark 6.2.17 and the fact that the unipotent bundles in an orbit must be
isomorphic, cf. ¶1.3.13.

Finally, comparing both dimension computations and using Proposition 1.3.12, we
calculate that

n4n−8 =
∑
j∈J0

ej ≤
∑
j∈J0

(rj)2 ≤ (
∑
j∈J0

rj)2 = (n2n−4)2.

We see that the inequalities have to be equalities, which forces J0 to be a singleton,
say for notation J0 = {0}, and also e0 = r2

0. By Proposition 1.3.12 this means that

U0 ≃ O⊕n2n−4

X

as desired. Note that J0 = {0} means that the action of Proposition 6.2.15 is transitive,
since by definition J0 indexes the set of orbits.

6.2.18. — Now we study the interaction between the Sn-action on X and the split
Jordan–Hölder filtration from Proposition 6.2.13. We already saw that F is Sn-
invariant, so pullback along σ ∈ Sn permutes the graded pieces Ej of a Jordan–Hölder
filtration of F. Taking Proposition 6.2.13 into account, we see that for each σ ∈ Sn
there is a unique

α(σ) ∈ X∨[n]/Σµ such that σ∗E0 ≃ E0 ⊗ Pα(σ).

This defines a map
α : Sn → X∨[n]/Σµ.

6.2.19. Proposition. —
(i) The map α : Sn → X∨[n]/Σµ is a crossed homomorphism for the (right) action

of Sn inherited from X∨, and
(ii) α is a principal crossed homomorphism if n ≥ 5 is odd.

Proof. — (i) Let σ, τ ∈ Sn. By calculating

E0 ⊗ Pα(στ) ≃ (στ)∗E0 ≃ τ∗σ∗E0 ≃ τ∗(E0 ⊗ Pα(σ))
≃ E0 ⊗ Pα(τ) ⊗ τ∗Pα(σ) ≃ E0 ⊗ Pα(τ)+τ∨(α(σ))

we see that
α(στ) = α(τ) + τ∨(α(σ)),

so α is indeed a crossed homomorphism.
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(ii) We know by ¶1.3.6 that

Σµ = φL(X[n]) = (φL0 ⊗ ϕ0)(X[n]),

and by definition X = (A0 ×A∨
0 )⊗ Γn, so we have a cokernel sequence

(A0 ×A∨
0 )[n]⊗ Γn

φL0 ⊗ϕ0−−−−−→ (A0 ×A∨
0 )∨[n]⊗ Γ∨

n → X∨[n]/Σµ → 0.

Define Σ0 := φL0((A0 ×A∨
0 )[n]), then we get the exact sequence

0→ Σ0
∆−→ Σ0 ⊗ Γn

id ⊗ϕ0−−−−→ (A0 ×A∨
0 )∨[n]⊗ Γ∨

n → X∨[n]/Σµ → 0,

where we used for exactness at Σ0 ⊗ Γn that

ker(id⊗ϕ0) = {(a, . . . , a) ∈ Σn0 |
∑n
i=1 a = 0}

and that Σ0 consists of n-torsion elements. Applying group cohomology, we get

H1(Sn, (A0 ×A∨
0 )∨[n]⊗ Γ∨

n)→ H1(Sn, X∨[n]/Σµ)

→ H2(Sn, (Σ0 ⊗ Γn)/Σ0)→ H2(Sn, (A0 ×A∨
0 )∨[n]⊗ Γ∨

n),

where the first term is zero by Proposition 4.2.8, and the last term is zero for n ≥ 7 by
Proposition 4.2.7 and for n = 5 by Proposition 6.2.22. Next, using that Σ0 is n-torsion,
we obtain from Proposition 4.1.8 the exact sequence

0→ Σ0
∆−→ Σ0 ⊗ Γn

id ⊗ϕ0−−−−→ Σ0 ⊗ Γ∨
n

sum−−→ Σ0 → 0.

Applying group cohomology, we get

H1(Sn,Σ0 ⊗ Γ∨
n)→ H1(Sn,Σ0)→ H2(Sn, (Σ0 ⊗ Γn)/Σ0)→ H2(Sn,Σ0 ⊗ Γ∨

n),

where the first term is zero for n ≥ 5 by Proposition 4.2.8, and the last term is zero
for n ≥ 7 by Proposition 4.2.7 and for n = 5 by Proposition 6.2.22.

Finally, using that Σ0 is abelian and has no 2-torsion since n is odd, we see that

H1(Sn,Σ0) ≃ Hom(Sn,Σ0) ≃ Hom(Z/2Z,Σ0) = 0.

In conclusion,
H1(Sn, X∨[n]/Σµ) = 0,

so the crossed homomorphism α : Sn → X∨[n]/Σµ must be principal.

6.2.20. Remark. — In certain situations the proof of Corollary 6.2.21.(ii) can be
simplified. The concrete definition of φL0 above lets one calculate that

ker(φL0) ≃ A0[e(λ)− 1].

So if in addition to gcd(e(λ), n) = 1 also gcd(e(λ)− 1, n) = 1 holds, we get that the
homomorphism φL0 : (A0 ×A∨

0 )[n]→ (A0 ×A∨
0 )∨[n] is an isomorphism. Then we see

that

X∨[n]/Σµ = ((A0 ×A∨
0 )∨[n]⊗ Γ∨

n)/(φL0 ⊗ ϕ0)((A0 ×A∨
0 )[n]⊗ Γn)

actually carries a trivial Sn-action, since Sn acts trivially on Γ∨
n/ϕ0(Γn) by Proposi-

tion 4.1.7. This renders most of the proof of (ii) in Corollary 6.2.21 unnecessary.
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6.2.21. Corollary. — Assume that n ≥ 5 is odd. Then there exists α0 ∈ X∨[n]/Σµ
such that E0 ⊗ Pα0 is Sn-invariant.

Proof. — We know that the crossed homomorphism α : Sn → X∨[n]/Σµ must be
principal by Proposition 6.2.19, i.e. there exists some α0 ∈ X∨[n]/Σµ such that
α(σ) = σ∨(α0)− α0 for each σ ∈ Sn. This means by construction of α that E0⊗P−α0

is Sn-invariant.

We used the following proposition in the proof of Proposition 6.2.19.

6.2.22. Proposition. — We have H2(S5, A[5]⊗ Γ∨
5 ) = 0 and H2(S5,Σ0 ⊗ Γ∨

5 ) = 0
where A is an abelian variety and Σ0 is the group from above.

Proof. — We claim that H3(S5,Z/5Z) vanishes. Apply group cohomology to the
sequence

0→ Z ·5−→ Z→ Z/5Z→ 0
to get the exact sequence

H3(S5,Z) ·5−→ H3(S5,Z)→ H3(S5,Z/5Z)→ H4(S5,Z) ·5−→ H4(S5,Z)

We know from Table 1 on page 63 that H4(S5,Z) ≃ Z/2Z ⊕ Z/4Z ⊕ Z/3Z and
H3(S5,Z) ≃ Z/2Z, so multiplication by 5 is an isomorphism on both.

By Proposition 4.2.7 we know that H2(S5, A[5] ⊗ Γ∨
5 ) injects into H3(S5, A[5]),

but A[5] is isomorphic to a direct sum of copies of Z/5Z. Similarly, the group Σ0 is
a finite abelian group which is 5-torsion, so it is also isomorphic to a direct sum of
copies of Z/5Z, so we can again conclude by Proposition 4.2.7.

Finally we can use the information gained above to prove Theorem 6.2.1.

Proof of Theorem 6.2.1. — To summarize so far, we have constructed an Sn-equi-
variant sheaf F following the steps of Construction 6.2.3, where we have executed these
steps concretely in ¶¶6.2.4, 6.2.5, 6.2.8 and 6.2.9 while carrying an Sn-equivariant
structure along; the sheaf F itself is defined in ¶6.2.9. In Proposition 6.2.13 we have
seen that F is the direct sum

F ≃
⊕
α

(E0 ⊗ Pα)⊕r

of simple semi-homogeneous vector bundles, where α ∈ X∨[n]/Σµ and r = n2n−4, and
each of the summands provides the kernel of a derived equivalence

FME0⊗Pα : Db(A⊗ Γn) ∼−→ Db(A∨ ⊗ Γn).

For n ≥ 5 odd, at least one of these summands must be Sn-invariant by Corol-
lary 6.2.21, say E := E0 ⊗Pα0 . Since the sheaves E0 ⊗Pα are pairwise non-isomorphic,
there are no non-zero homomorphisms between them, cf. ¶1.3.10, so the Sn-equivariant
structure on F restricts to one on E⊕r. Also recall that r = n2n−4 is odd since n is odd.
Now Propositions 2.2.15 and 2.2.17 explain that the Sn-invariant sheaf E inherits an
Sn-equivariant structure from E⊕r. Here we used again that r is odd.
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These arguments culminate in the construction of an Sn-equivariant kernel

(E, ϕ) ∈ Db
∆Sn

((A⊗ Γn)× (A∨ ⊗ Γn))

such that FME : Db(A ⊗ Γn) ∼−→ Db(A∨ ⊗ Γn) is a derived equivalence. So we can
conclude exactly as in the proof of Theorem 6.1.8, using Ploog’s method (cf. §2.2) and
the equivariant viewpoint on derived categories of generalized Kummer varieties (cf.
Proposition 2.2.21).

6.2.23. Remark. — Note that the same techniques that lead to derived equivalences
of generalized Kummer varieties associated to A and A∨ can in principle be applied to
any pair of abelian varieties A and B, as long as one has sufficient information about
the homomorphisms between A and B.
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Miscellaneous results





CHAPTER 7

Birationality of generalized Kummer varieties

In this chapter we study birational equivalences between generalized Kummer
varieties with the goal to exhibit examples which are not birationally equivalent but
are derived equivalent according to Theorem 1. Before this, we recall for context some
results which establish isomorphisms between generalized Kummer varieties associated
to an abelian variety and its dual. After the expositional part at the beginning of
this section, the calculations that lead to Theorems 7.2.8 and 7.2.12 are original. The
interested reader is invited to consult the literature [ADM16; MMY20; Oka21] for
further examples of non-birational but derived equivalent hyperkähler varieties.

7.0.1. Situation. — In this chapter we work over the complex numbers C, in order
to consider singular cohomology of (analytifications of) varieties. Let A be an abelian
surface over C, and let λ : A→ A∨ be some polarization of A of degree deg(λ) = d2.

7.1. Isomorphic generalized Kummer varieties

7.1.1. Proposition. — We always have an isomorphism Kum1(A) ≃ Kum1(A∨) of
Kummer surfaces.

Proof. — By Mukai [Muk81], we know that A and A∨ are derived equivalent, i.e.
Db(A) ≃ Db(A∨). So by [HLOY03, Thm. 0.1] (recalled as Theorem 2.3.16), it follows
that Kum1(A) and Kum1(A∨) are isomorphic. The proof of the latter theorem relies
on a comparison of transcendental lattices, so we want to discuss a lattice theoretic
argument which sidesteps the use of derived equivalences. Following [HuyK3, §3.2.5],
the construction of the Kummer surface Kum1(A), cf. Example 1.1.6, as a quotient of
the blowup Ã of A in the two-torsion points A[2] ⊂ A leads to a Hodge isometry

H2(Ã,Z) ≃ H2(A,Z)⊕
16⊕
i=1

Z · [Ei]

and a Hodge sublattice

H2(Kum1(A),Z) ⊃ H2(A,Z)⊕
16⊕
i=1

Z · [Ei], (7.1.1)
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where Ei ⊂ Ã denote the exceptional divisors and Ei their image under the quotient
projection. Since one has a Hodge-isometry

H2(A,Z)
cup
≃ H2(A,Z)∨ ≃ ∧2 H1(A,Z)∨

cap
≃ ∧2 H1(A,Z) ≃ ∧2 H1(A∨,Z) ≃ H2(A∨,Z),

cf. [Nam02a, ¶3] and [Shi78, Lem. 3], one would like to extend this isometry to
one between H2(Kum1(A),Z) and H2(Kum1(A∨),Z) and conclude using the Torelli
theorem for K3 surfaces [HuyK3, Thm. 3.2.4]. But even when saturating the right
summand in (7.1.1) to get the Kummer lattice K, one still has a proper inclusion

H2(A,Z)⊕K ⊂ H2(Kum1(A),Z),

and one has trouble to extend the Hodge isometry, cf. [Nam02a, Rmk. 1]. Instead
[HLOY03] focus on the transcendental lattices T(A) := NS(A)⊥ ⊂ H2(A,Z) and
T(Kum1(A)) := NS(Kum1(A))⊥ ⊂ H2(Kum1(A),Z), where one has

T(Kum1(A)) ≃ T(A)(2),

cf. [Nik76, Eq. (6)] and [Mor84, Lem. 3.1]; here the notation “(2)” signifies that the
pairing of the lattice is scaled by the factor 2. So the isometry T(A) ≃ T(A∨) induces
an isometry

T(Kum1(A)) ≃ T(Kum1(A∨)),
which must come from an isomorphism Kum1(A) ≃ Kum1(A∨) by [Muk87, Prop. 6.2].

7.1.2. Proposition. — In the case d = 1, we have Kumm(A) ≃ Kumm(A∨) for any
integer m ≥ 1.

Proof. — The hypothesis d = 1 means that λ : A→ A∨ is an isomorphism, i.e. A is
principally polarizable. As the Hilbert scheme of points on A and the Hilbert–Chow
morphism respect isomorphisms, the construction of generalized Kummer varieties
respects isomorphisms as well.

7.1.3. Proposition. — Assume that End(A) = Z and that λ : A→ A∨ is the polar-
ization of minimal degree deg(λ) = d2. Set n := d+ 1. Then we have isomorphisms

(i) Hilbn(A)×A∨ ≃ Hilbn(A∨)×A∨∨, and
(ii) Kumd(A) ≃ Kumd(A∨).

Proof. — The polarization λ corresponds to an ample class h ∈ NS(A) ⊂ H2(A,Z) of
degree h2 = 2d, i.e. λ = φL with h = [L], cf. Remark 1.2.18. We will apply Yoshioka’s
results [Yos01] on moduli spaces M(A,h)(ν) of stable sheaves on abelian surfaces A;
see loc. cit. and [HL] for background on this theory.

(i) Consider the Mukai vector

ν1 := 1 + 0− nω ∈ H̃(A,Z) := H0(A,Z)⊕H2(A,Z)⊕H4(A,Z),

where H4(A,Z) = Z · ω is spanned by the fundamental class ω. Denote by M(A,h)(ν1)
the moduli space of h-Gieseker stable sheaves F on A with Mukai vector ν(F) = ν1.
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By [Yos01, §4.3.1] we have an isomorphism

M(A,h)(ν1) ≃ Hilbn(A)×A∨. (7.1.2)

Next, consider the Mukai vector ν2 := 1 + h + (d − n)ω ∈ H̃(A,Z). Then we have
ν2

2 = h2 − 2(d− n) = 2n, computed in the Mukai lattice H̃(A,Z), so

ν1 · exp(h) = (1− nω) · (1 + h+ ( 1
2h

2)ω)

= 1 + h+ ( 1
2h

2)ω − nω

= 1 + h+ ( 1
2h

2)ω − ( 1
2h

2 − (d− n))ω
= 1 + h+ (d− n)ω
= ν2.

By [Yos01, Lem. 1.1] we have

M(A,h)(ν1) ≃ M(A,h)(ν1 · exp(h)) = M(A,h)(ν2), (7.1.3)

since rk(ν1) = 1 > 0 and h is an algebraic class. Now we consider the dual abelian
variety A∨ and recall that End(A) = Z implies NS(A∨) = Z · ȟ, where ȟ denotes
the ample class corresponding to the dual polarization λδ : A∨ → A, which has again
degree deg(λδ) = d2 with 2d = ȟ2, cf. Propositions 1.2.25 and 1.2.27. Thus, by [Yos01,
Prop. 3.5], we obtain an isomorphism

M(A,h)(1 + h− ω) ≃ M(A∨,ȟ)(1 + ȟ− ω̌). (7.1.4)

The desired isomorphism in statement (i) is now a composition of the isomorphisms
in (7.1.2), (7.1.3), and (7.1.4).

(ii) Since the generalized Kummer variety Kumn−1(A) is the fiber of the Albanese
map

Hilbn(A)×A∨ → A×A∨

over (0, 0) ∈ A×A∨, cf. [Yos01, §4.3.1], and Albanese maps are unique up to a unique
isomorphism of abelian varieties by their universal property, cf. [BeaCAS, Thm. V.13],
the isomorphism constructed in (i) restricts to an isomorphism

Kumn−1(A) ≃ Kumn−1(A∨).

In fact, Yoshioka describes the Albanese map albA,ν : M(A,h)(ν)→ A×A∨ concretely
in [Yos01, §4.1]. By inspection of the definition, the isomorphism (7.1.3) is seen to be
compatible with the Albanese maps albA,ν1 and albA,ν1 exp(h).(1) The compatibility of
(7.1.4) with the Albanese maps albA,ν2 and albA∨,ν̌2 is explained in [Yos01, Prop. 4.9].(2)

(1)When inspecting the definition, one has to recall that det(E ⊗ L) ≃ det(E) ⊗ L⊗ rk(E) for each
E ∈ M(A,h)(ν) and L ∈ Pic(A), and that rk(E) = rk(ν) is independent of E since it is determined by
the Mukai vector ν.
(2)Here one has to realize that the moduli space of simple semi-homogeneous vector bundles F on A

with ch(F) = ch(O(h)), as occurring in [Yos01, §4.2], is isomorphic to A∨.
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7.2. Non-birational generalized Kummer varieties

7.2.1. Theorem (Namikawa [Nam02a]). — Assume that End(A) = Z, and
that the polarization λ : A → A∨ of minimal degree satisfies deg(λ) = 32. Then the
generalized Kummer fourfolds Kum2(A) and Kum2(A∨) are not birationally equivalent.

We want to reproduce the proof of this theorem, since below we will build directly
upon it. In order to do so, we need to recall a few facts about generalized Kummer
varieties, cf. Chapter 1. These facts are mentioned and used in [Nam02a, ¶¶1–4] and
[Oka21, Prop. 2.2]; we spell out some explanations.

7.2.2. — We consider generalized Kummer varieties of dimension 4.
(i) Specializing ¶1.1.18.(ii) to the case n := 3, we have a Hodge isometry

H2(Kum2(A),Z) ≃ H2(A,Z)⊕ Zδ, (7.2.1)

where on the right hand side δ2 = −6, and 2δ = [E] is represented by the
exceptional divisor E ⊂ Kum2(A) associated to the Hilbert–Chow morphism.
See ¶7.2.3 for more information about E. One can find a geometric discussion
of δ and E in [Bea83, §§6–7] and [Yos01, §4.3.1], for example.

(ii) In particular, we obtain from the Lefschetz theorem on (1, 1)-classes and (7.2.1)
an isomorphism

NS(Kum2(A)) ≃ NS(A)⊕ Zδ.
In fact, the first Chern class c1 : Pic(Kum2(A))→ NS(Kum2(A)) is observed
to be an isomorphism by studying the exponential sequence, since by simply-
connectedness of Kum2(A), we have that H1(Kum2(A),Z) = 0, which implies
H1(Kum2(A),O) = 0 by the Hodge decomposition. So

Pic(Kum2(A)) ≃ NS(A)⊕ Zδ.

(iii) Let us take a lattice theoretic viewpoint, see [HuyK3, Ch. 14] for an introduction.
The lattice

U := Z · e⊕ Z · f
with e2 = 0, f2 = 0, and e.f = 1 is called the hyperbolic plane. For k ∈ Z, denote
by ⟨k⟩ := Z · g the rank 1 lattice with g2 = k.

By Remark 1.2.5 we have H2(A,Z) ≃ ∧2(Z⊕4), compatible with cup-product
on the left hand side and exterior product on the right hand side. So one verifies
straightforwardly that one has isometries

H2(A,Z) ≃ U⊕3 (7.2.2)

and
H2(Kum2(A),Z) ≃ U⊕3 ⊕ ⟨−6⟩.

If h ∈ NS(A) is a primitive class, i.e. it is not a multiple of any other class,
with h2 = 2d, then one can choose the isometry (7.2.2) in such a way that h
corresponds to e +df in the first copy of U inside U⊕3, cf. [HuyK3, Cor. 14.1.10].



7.2. Non-birational generalized Kummer varieties 119

7.2.3. — Denote by E ⊂ Kum2(A) the exceptional divisor of the desingularization
given by the Hilbert–Chow morphism HC: Kum2(A)→ (A⊗ Γ3)/S3.

(i) The exceptional divisor E ⊂ Kum2(A) is effective and rigid, i.e.

dim H0(Kum2(A),O(E)) = 1,

since it is the exceptional divisor of a desingularization of a normal, projective
variety. Since we have H1(Kum2(A),O) = 0, this is equivalent to the vanishing
of H0(Kum2(A),NE/Kum2(A)) = 0, where NE/Kum2(A) ≃ OE(E) is the normal
bundle of E ⊂ Kum2(A).

(ii) Let Ẽ → E be a desingularization of E. Then the Albanese of Ẽ is

Alb(Ẽ) ≃ A.

See [Ser59] and [BeaCAS, Thm. V.13] as references on Albanese varieties. Indeed,
the singular locus of (A ⊗ Γ3)/S3 ⊂ Sym3(A) is given by ∆ = {a + a + b |
a ∈ A, b = −2a}. The morphism A→ ∆ mapping a 7→ a+ a+ (−2a) induces
an isomorphism A \A[3] ∼−→ ∆◦, where

∆◦ := ∆ \ {a+ a+ a | a ∈ A[3]}.

The rational map Ẽ → E → ∆ 99K A extends to a morphism Ẽ → A since Ẽ is
smooth and A is an abelian variety, cf. [Mil86, Thm. 3.1]. We claim that this is
an Albanese morphism (after choosing suitable basepoints, which we elide in
the discussion below).

If x = a+a+b ∈ ∆◦, then HC−1({x}) ≃ Hilb2(A, a)×Hilb1(A, b) is a product
of local Hilbert schemes, cf. [Iar72, p. 820], [Bri77]. But Hilb1(A, b) ≃ pt is
a point and Hilb2(A, a) ≃ P(TA,a) is the projective tangent space of A at a.
Writing E◦ := HC−1(∆◦), this leads to an isomorphism E◦ ≃ P(T∆◦), and since
TA ≃ O⊕2

A is (locally) trivial, we obtain that

E◦ ≃ ∆◦ × P1.

We consider the universal property describing an Albanese morphism. So let
f : Ẽ → B be a morphism to an abelian variety B. This induces a rational map

f : ∆◦ × P1 ≃ E◦ 99K B.

But any rational map from a product to an abelian variety decomposes as a
sum f = f1 + f2 of rational maps f1 : ∆◦ 99K B and f2 : P1 99K B, cf. [LanAV,
Thm. II.3]. Now since

dim(Alb(P1)) = dim(H0(P1,Ω1)) = 0,

the morphism f2 must be constant, say f2 = 0 without loss of generality.
Finally, since ∆◦ is birationally equivalent to A and A is smooth, f1 extends to
a morphism f1 : A→ B, which witnesses the factorization of f : Ẽ → B over the
morphism Ẽ → A (note here that E◦ ↪→ Ẽ is a dense open subset). Uniqueness
of the factorization is easily verified using the density of ∆◦ ↪→ A.
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7.2.4. — Let X and Y be smooth, projective varieties, and let f : X ∼99K Y be a
birational map.

(i) Assume that X and Y have trivial canonical bundles ωX ≃ OX and ωY ≃ OY ,
respectively. Then f is an isomorphism in codimension 1, i.e. there exists open
subsets U ⊂ X and V ⊂ Y with codimX(X \ U) ≥ 2 and codimY (Y \ V ) ≥ 2
such that f : U ∼−→ V is an isomorphism, cf. [Bat99, Prop. 3.1]. So we obtain an
isomorphism

f∗ : H2(Y,Z) ∼−→ H2(X,Z), (7.2.3)
since H2(X,Z) ≃ H2(U,Z) and H2(Y,Z) ≃ H2(V,Z), cf. [IveCS, IX.2.1,
Thm. IX.4.7].

(ii) If X and Y are hyperkähler varieties, e.g. X = Kum2(A) and Y = Kum2(A∨),
then (7.2.3) is a Hodge isometry, where the second cohomology groups are
endowed with their Beauville–Bogomolov–Fujiki form, cf. [OGr97, Prop. 1.6.2],
[Huy99, Lem. 2.6].

(iii) Since NS(X) is a finitely generated abelian group, NS(X) ⊗Z R is a finite-
dimensional vector space over R, which we endow with the euclidean topology.
A divisor D ∈ Div(X) is called moveable if

codimX(Bl(|D|)) ≥ 2,

i.e. the base locus of the complete linear system |D| has codimension at least 2,
cf. [Yos16, Def. 1.7]. Denote the convex cone generated by classes of movable
divisors by

Mov(X) ⊂ NS(X)⊗Z R,
and denote it closure in the euclidean topology by Mov(X).

Let f : X ∼99K Y be a birational map which is an isomorphism in codimension 1.
We see that if D ∈ Div(Y ) is moveable, then f∗D ∈ Div(X) is also moveable. So
the isomorphism f∗ : NS(Y )⊗Z R ∼−→ NS(X)⊗Z R restricts to an isomorphism

f∗ : Mov(Y ) ∼−→ Mov(X)

of convex cones.
Recall that if C is a convex cone, one calls R≥0 · x ⊂ C an extremal ray if

for any x1, x2 ∈ C and α1, α2 ∈ R>0 the equation x = α1x1 + α2x2 implies
that x1, x2 ∈ R≥0 · x. Note that f∗ maps extremal rays to extremal rays.

Proof of Theorem 7.2.1. — We follow the proof from [Nam02a]. By the assumptions
on A, we can write NS(A) = Z · h with h2 = 2d and d := 3. So, by ¶7.2.2, we have

Pic(Kum2(A)) ≃ Z · h⊕ Z · δ,

where δ2 = −6 and h.δ = 0. The analogous statement holds for A∨, where we write ȟ
and δ̌ in place of h and δ.

Let f : Kum2(A) ∼99K Kum2(A∨) be a birational equivalence. By ¶7.2.4, f is an
isomorphism in codimension 1 and induces a Hodge-isometry f∗ : H2(Kum2(A∨),Z)→
H2(Kum2(A),Z), and hence it induces an isomorphism of lattices

f∗ : Pic(Kum2(A∨)) ∼−→ Pic(Kum2(A)).
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We assume that f∗(δ̌) = ±δ, which we verify at the end of the proof. Then in fact

f∗(δ̌) = δ,

since 2δ and 2δ̌ are represented by the effective divisors E and Ě, cf. ¶7.2.2. Since E
is rigid, cf. ¶7.2.3, f : Kum2(A) ∼99K Kum2(A∨) restricts to a birational map

f |E : E ∼99K Ě.

Then the desingularizations Ẽ and ˜̌E of E and Ě, respectively, are also birationally
equivalent, and since they are smooth, this induces by ¶7.2.3 an isomorphism of
Albanese varieties

A ≃ Alb(Ẽ) ∼−→ Alb( ˜̌E) ≃ A∨.

This contradicts the assumption on the minimal degree of a polarization of A.
Finally we verify that indeed f∗(δ̌) = δ; for a more general calculation see the proof

of Theorem 7.2.8. Write f∗(δ̌) = zh+wδ for some z, w ∈ Z. Since δ̌2 = −6, we obtain
the equation

−6 = f∗(δ̌)2 = (zh+ wδ)2 = 6z2 − 6w2,

which is only satisfied when w = ±1 and z = 0.

To state and prove our generalization of Namikawa’s theorem we need to recall a
few facts about Pell equations.

7.2.5. Pell equations. — See [JKPell] for reference, for example. Fix some N ∈ N.
A Pell equation is a diophantine equation, i.e. x, y ∈ Z, of the form

x2 −Ny2 = 1. (7.2.4)

The trivial solutions are (x, y) = (±1, 0) and always exist. If N is a perfect square,
then (7.2.4) has only trivial solutions; the converse is in fact also true. In the case that
N is not a perfect square, the fundamental solution (x0, y0) is the solution of (7.2.4)
with x0, y0 > 0 and |x0| minimal among all solutions (equivalently |y0| is minimal).

Below we are especially interest in the case N = 3d. We list the fundamental
solutions of x2 − 3dy2 = 1, taken from [OEIS, A002349, A002350] in Table 1. The
columns with odd y0 are shaded in gray.

7.2.6. Proposition. — Consider the Pell equation x2 − 3dy2 = 1 for d ∈ N, with
fundamental solution (x0, y0).

(i) There are infinitely many d ∈ N, with gcd(3, d) = 1, such that y0 = 1.
(ii) If x0 is even, then d and y0 are odd.
(iii) x0 is even if and only if some solution (x, y) has even x. Equivalently, the

equation 4x′2 − 3dy2 = 1 has a solution (here x = 2x′).
(iv) y0 is odd if and only if some solution (x, y) has odd y.

Proof. — (i) For any k ∈ N set d′ := 2k2 + (k + 1)2 − 1 and d′′ := k2 + 2(k + 1)2 − 1.
Then one calculates (3k+ 1)2 − 3d′ = 1 and (3k+ 2)2 − 3d′′ = 1, as desired. Reducing
modulo 3 one sees that for every k either d′ or d′′ is coprime to 3.

(ii) This is elementary.



122 Chapter 7. Birationality of generalized Kummer varieties

Table 1. Fundamental solutions (x0, y0) of x2 − 3dy2 = 1.

d 4 5 7 8 10 11 13 14 16 17 18 19 20 21 22 23 24
N = 3d 12 15 21 24 30 33 39 42 48 51 54 57 60 63 66 69 72
x0 7 4 55 5 11 23 25 13 7 50 485 151 31 8 65 7775 17
y0 2 1 12 1 2 4 4 2 1 7 66 20 4 1 8 936 2

(iii) For Pell equations in general, the recurrence system{
xn+1 = x0xn + 3dy0yn

yn+1 = x0yn + y0xn

(7.2.5)
(7.2.6)

enumerates all solutions (±xn,±yn)n. We claim that we have the recurrence relation

xn+1 = 2x0xn − xn−1 (7.2.7)

with x−1 := 1. By the recurrence system equations and Pell’s equation, we have

xn+1 = x0xn + 3dy0yn

= x0xn + 3dy0(x0yn−1 + y0xn−1)

= x0xn + 3dy0x0yn−1 + 3dy2
0xn−1

= x0xn + 3dy0x0yn−1 + (x2
0 − 1)xn−1

But since (7.2.5) multiplied with x0 says x0xn = x2
0xn−1 + 3dy0x0yn−1, we have

3dy0x0yn−1 = x0xn − x2
0xn−1.

This establishes (7.2.7), from which it becomes clear that x0 is even if and only if
some xn is even.

(iv) Analogously to (iii), one deduces the recurrence relation

yn+1 = 2x0yn − yn−1

with y−1 := 0. So y0 is odd if and only if some yn is odd.

7.2.7. Proposition. — Let (x1, y1) and (x2, y2) be two solutions of the Pell equation
x2 −Ny2 = 1 which satisfy x1y2 + x2y1 = 0, then x1 = ±x2 and y1 = ∓y2.

Proof. — By Brahmagupta’s identity, we have

(x1x2 +Ny1y2)2 −N(x1y2 + x2y1)2 = 1.

So x1y2 + x2y1 = 0 implies that x1x2 + Ny1y2 = ±1. Multiplying this by y2 yields
x1x2y2 + Ny1y

2
2 = ±y2, and substituting the equation x1y2 = −x2y1 from the

hypothesis yields

±y2 = −x2
2y1 +Ny1y

2
2 = −y1(x2

2 −Ny2
2) = −y2.

So the hypothesis x1y2 + x2y1 = 0 becomes x1y2 ∓ x2y2 = 0, implying x1 = ±x2
(which is also true in the case of the trivial solutions (±1, 0)).
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7.2.8. Theorem. — Assume that End(A) = Z, and let deg(λ) = d2 be the the degree
of the polarization λ : A→ A∨ of minimal degree. Assume that either

(i) 3 divides d, and that d/3 is a perfect square, or
(ii) gcd(3, d) = 1 and d ̸= 1, and that the Pell equation x2 − 3dy2 = 1 has some

solution with odd y.
Then the generalized Kummer fourfolds Kum2(A) and Kum2(A∨) are not birationally
equivalent.

Proof. — Assume for sake of contradiction that there exists some birational map
f : Kum2(A) ∼99K Kum2(A∨). Now the general setup is exactly as in the proof of
Namikawa’s theorem (Theorem 7.2.1), whose notation we continue to use. That is,
f induces via pullback on singular cohomology a lattice isometry

φ : Zȟ⊕ Zδ̌ → Zh⊕ Zδ,

where 
h2 = 2d

δ2 = −6
h.δ = 0,

(7.2.8)

(7.2.9)
(7.2.10)

and similarly for ȟ and δ̌. The goal is to show that φ = id, and conclude as in
Theorem 7.2.1 the non-birationality by arriving at a contradiction. We write{

φ(ȟ) = xh+ yδ

φ(δ̌) = zh+ wδ

(7.2.11)

(7.2.12)

for some x, y, z, w ∈ Z. Since φ is an isometry we obtain from (7.2.8)-(7.2.10) the
following equations: 

−6 = (zh+ wδ)2 = 2dz2 − 6w2

2d = (xh+ yδ)2 = 2dx2 − 6y2

0 = (xh+ yδ)(zh+ wδ) = 2dxz − 6yw

(7.2.13)

(7.2.14)
(7.2.15)

(i) We can write d = 3d′, since 3 divides d by assumption. So the system (7.2.13)-
(7.2.15) becomes, after substituting d, dividing by 6, and slight rearranging,

w2 − d′z2 = 1

y2 − d′(x2 − 1) = 0
yw − d′xz = 0

(7.2.16)

(7.2.17)
(7.2.18)

Now we are already done, since the Pell equation w2 − d′z2 = 1 has only the trivial
solutions (±1, 0) when d′ is a perfect square.

We still push the calculation a bit further for the convenience of the reader who wishes
to study this case even further. Equation (7.2.18) times w implies yw2−d′xzw = 0, and
substituting (7.2.16) into it yields y(d′z2 +1)−d′xzw = 0. So d′ divides y, say y = d′y′

for some y′ ∈ Z. Then (7.2.17) becomes d′2y′2 − d′(x2 − 1) = 0, so d′y′2 − x2 + 1 = 0



124 Chapter 7. Birationality of generalized Kummer varieties

since d′ ̸= 0. Also (7.2.18) becomes d′y′w− d′xz = 0, so y′w− xz = 0. Collecting this
together, the system (7.2.16)-(7.2.18) is equivalent to

w2 − d′z2 = 1

x2 − d′y′2 = 1
y′w − xz = 0

y = d′y′.

(7.2.19)

(7.2.20)
(7.2.21)
(7.2.22)

Using Proposition 7.2.7 we conclude that{
φ(ȟ) = xh+ d′y′δ

φ(δ̌) = ±(y′h+ xδ)

(7.2.23)

(7.2.24)

where (x, y′) is a solution of the Pell equation x2 − d′y′2 = 1. But when d′ is a
perfect square, then the latter Pell equation has only the trivial solutions (±1, 0), so
φ(ȟ) = ±h and φ(δ̌) = ±δ, where the minus signs can be excluded since h, ȟ, δ, and δ̌
are represented by effective divisors on projective varieties.

(ii) From now on we assume that gcd(3, d) = 1. The system (7.2.13)-(7.2.15)
becomes 

dz2 − 3(w2 − 1) = 0

d(x2 − 1)− 3y2 = 0
dxz − 3yw = 0.

(7.2.25)

(7.2.26)
(7.2.27)

By (7.2.25) we know that 3|dz2, so 3 divides z, say z = 3z′. By (7.2.27) we know that
d|yw, and by (7.2.25) we have d|w2 − 1, so gcd(d,w) = 1 and d divides y, say y = dy′.
With these changes of variables, the system (7.2.25)-(7.2.27) becomes

9dz′2 − 3(w2 − 1) = 0

d(x2 − 1)− 3d2y′2 = 0
3dxz′ − 3dy′w = 0,

(7.2.28)

(7.2.29)
(7.2.30)

and after dividing by 3 and d respectively we get
w2 − 3dz′2 = 1

x2 − 3dy′2 = 1
xz′ − y′w = 0.

(7.2.31)

(7.2.32)
(7.2.33)

Taking Proposition 7.2.7 into account, we arrive at{
φ(ȟ) = xh+ y′dδ

φ(δ̌) = ±(3y′h+ xδ),

(7.2.34)

(7.2.35)

where (x, y′) is a solution of the Pell equation x2 − 3dy′2 = 1.
Now we will extract further conditions on the pairs (x, y′) from the fact that φ is

induced by a birational map. We follow the strategy of [Oka21, Prop. 2.2], where



7.2. Non-birational generalized Kummer varieties 125

the non-birationality of Hilbert schemes of points on K3 surfaces is studied. Since
NS(A) ≃ Z and gcd(3, d) = 1, we know by [Mor21, Thm. 0.1] that the moveable cone
of Kum2(A) is

Mov(Kum2(A)) = R≥0 · h⊕ R≥0 ·
(
h− dy′

0
3x0

δ

)
,

where (x0, y
′
0) is the fundamental solution of the diophantine equation 3x2

0 − dy′2
0 = 3,

and similarly for Kum2(A∨). The latter equation implies that y′
0 is divisible by 3,

say y′
0 = 3y0. So

Mov(Kum2(A)) = R≥0 · h⊕ R≥0 · (x0h− dy0δ) ,

where (x0, y0) is the fundamental solution of the Pell equation x2
0 − 3dy2

0 = 1. Since φ
is induced from a birational equivalence of hyperkähler varieties,

φ⊗ R : NS(Kum2(A∨))⊗ R→ NS(Kum2(A))⊗ R

maps the moveable cone to the movable cone. Hence φ preserves the set {h, x0h−dy0δ}
of primitive generators of the extremal rays of the moveable cone. That is, either
φ(ȟ) = h or φ(ȟ) = x0h − dy0δ. In the first case, we get φ(δ̌) = δ, as φ(δ̌) = −δ is
geometrically impossible, as before. In the second case, comparing with (7.2.34) yields
that (x, y′) = (x0,−y0), so {

φ(ȟ) = x0h− y0dδ

φ(δ̌) = ±(3y0h− x0δ).

(7.2.36)

(7.2.37)

We claim that the undetermined sign in (7.2.37) must be positive, so either φ = id
or {

φ(ȟ) = x0h− y0dδ

φ(δ̌) = 3y0h− x0δ,

(7.2.38)

(7.2.39)

where (x0, y0) is the fundamental solution of the Pell equation x2 − 3dy2 = 1. Indeed,
consider the birational map

f−1 : Kum2(A∨) 99K Kum2(A),

which induces φ−1 = (f−1)∗. By the above, either φ−1 = id (and thus φ = id) or both
φ−1 and φ correspond to the fundamental solution (x0, y0), up to sign. There are three
cases to inspect: (a) Both φ and φ−1 have positive sign, (b) φ has positive sign and
φ−1 has negative sign, (c) both φ and φ−1 have negative sign. In case (b) and (c)
we calculate

φ−1(φ(ȟ)) = φ−1(x0h− y0dδ) = x0(x0ȟ− y0dδ̌) + y0d(3y0ȟ− x0δ̌)

= (x2
0 + 3dy2

0)ȟ− 2x0y0dδ̌ ̸= ȟ.

Case (a) remains possible, since φ−1(φ(ȟ)) = ȟ and φ−1(φ(δ̌)) = δ̌ does indeed hold.
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Next, we want to see that φ = id as soon as y0 is odd. Since φ = f∗ is induced
from a birational map f : Kum2(A) 99K Kum2(A∨), we have a commutative diagram

Zȟ⊕ Zδ̌ NS(Kum2(A∨)) H2(Kum2(A∨),Z) H2(A∨,Z)⊕ Zδ U⊕3⊕⟨−6⟩

Zh⊕ Zδ NS(Kum2(A)) H2(Kum2(A),Z) H2(A,Z)⊕ Zδ U⊕3⊕⟨−6⟩.

φ

≃

f∗ f∗

≃ ≃
φ

≃ ≃ ≃
(7.2.40)

That is, the lattice isometry φ : Zȟ ⊕ Zδ̌ → Zh ⊕ Zδ is the restriction of a lattice
isometry U⊕3⊕⟨−6⟩ ∼−→ U⊕3⊕⟨−6⟩. Denote the generator of ⟨−6⟩ again by δ, and
denote the bases of the three copies of U by {e, f}, {e′, f ′}, and {e′′, f ′′} respectively.
Recall that under the identifications in Diagram (7.2.40), we have

Zh⊕ Zδ ↪→ U⊕3⊕⟨−6⟩
h 7→ e + df
δ 7→ δ,

and similarly for ȟ and δ̌. For the readers convenience, we recall that e2 = 0, f2 = 0
and e.f = 1, and that all directs sums in (7.2.40) are orthogonal direct sums.

Now, let (x0, y0) be (the fundamental) solution of x2 − 3dy2 = 1, and assume
φ(δ̌) = 3y0h− x0δ and φ(e + df) = x0(e + df)− y0dδ. We study when it is possible to
extend φ to a map of lattices U⊕⟨−6⟩ → U⊕3⊕⟨−6⟩. Write

φ(f) = xf + yh+ zδ + v′e′ + w′f ′ + v′′e′′ + w′′f ′′

for some x, y, z, v′, w′, v′′, w′′ ∈ Z. One verifies φ(f)2 = 2xy+2dy2−6z2+2v′w′+2v′′w′′,
so f2 = 0 induces the equation

xy + dy2 − 3z2 + w = 0 with w := v′w′ + v′′w′′.

We have f.δ = 0, so φ(f).φ(δ) = 3y0x+ 6dy0y + 6x0z provides the equation

y0x+ 2dy0y + 2x0z = 0.

From f.h = 1 and φ(f).φ(h) = x0x+ 2dx0y + 6dy0z we get

x0x+ 2dx0y + 6dy0z = 1.

Thus we have the system of equations
xy + dy2 − 3z2 + w = 0
y0x+ 2dy0y + 2x0z = 0
x0x+ 2dx0y + 6dy0z = 1

(7.2.41)
(7.2.42)
(7.2.43)

Equation (7.2.42) tells us that x = −2
y0

(dy0y + x0z), and substituting this into (7.2.43)
yields

1 = −2x0

y0
(dy0y + x0z) + 2dx0y + 6dy0z =

(
−2x2

0
y0

+ 6dy0

)
z.
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Since y0 ≠ 0, the latter is equivalent to y0 = (−2x2
0 +6dy2

0) = (−2x2
0 +2x2

0−2)z = −2z,
where we have used the Pell equation 3dy2

0 = x2
0 − 1. So we conclude z = −y0

2 and see
that y0 has to be an even number, which is clearly in contradiction with the hypothesis
that y0 is odd.

7.2.9. Remark. — We want to remark that at the end of the proof of Theo-
rem 7.2.8, when y0 is allowed to be even, there is nothing in the way to extend φ

to all of U⊕3⊕⟨−6⟩. Indeed, continuing to calculate we obtain x = −2dy + x0, and
substituting into (7.2.41), we get the equation −dy2 + x0y− 3

4y
2
0 +w = 0, which has a

solution by the sheer fact that we can take w to be any integer. Thus we can extend φ
to an isometric embedding

U⊕⟨−6⟩ ↪→ U⊕3⊕⟨−6⟩.

Going further, we allude to general lattice theory, as recalled in [HuyK3, Ch. 14].
The fact that one has U⊕U⊥ = Λ for any embedding of lattices U ↪→ Λ, cf. [HuyK3,
Ex. 14.0.3], allows one to check that

(U⊕⟨−6⟩)⊕ (U⊕⟨−6⟩)⊥ = U⊕3⊕⟨−6⟩.

The last check is not completely formal and once again uses that y0 is even. We
conclude that

(U⊕⟨−6⟩)⊥ ≃ U⊕2,

since even, unimodular lattices of sign (n+, n−) with n± > 0 are unique, cf. [HuyK3,
Thm. 14.1.1]. In view of this, extending φ becomes trivial.

7.2.10. Remark. — Theorem 7.2.8 remains true when replacing A∨ by any abelian
surface Ǎ with End(Ǎ) = Z and A ̸≃ Ǎ. Indeed, write NS(Ǎ) = Z · ȟ with ȟ2 = 2ď.
Then the existence of a lattice isometry φ : Zȟ⊕ Zδ̌ → Zh⊕ Zδ, as considered in the
proof of Theorem 7.2.8, implies the equality

−12d = disc(Zh⊕ Zδ) = disc(Zȟ⊕ Zδ̌) = −12ď

of discriminants. So d = ď, and the calculations in the proof of Theorem 7.2.8 are
valid without any modification.

7.2.11. Proposition. — Let A and Ǎ be abelian surfaces, and let n ≥ 2. If Kumn(A)
and Kumn(Ǎ) are birationally equivalent, then A and Ǎ are derived equivalent.

Proof. — This is a direct adaptation of [Plo07, Prop. 10] from the case of Hilbert
schemes of points on K3 surfaces to the case of generalized Kummer varieties.

We know that a birational equivalence Kumn(A) ∼99K Kumn(Ǎ) induces a Hodge
isometry H2(Kumn(Ǎ),Z) ∼−→ H2(Kumn(A),Z). Since we have a Hodge isometry
H2(Kumn(A),Z) ≃ H2(A,Z) ⊕ Z · δ and δ is algebraic, this means that we obtain
isometries of transcendental lattices

T(A) ≃ T(Kumn(A)) ≃ T(Kumn(Ǎ)) ≃ T(Ǎ).

This implies that we have a derived equivalence Db(A) ≃ Db(Ǎ), by [BM01, Thm. 5.1].



128 Chapter 7. Birationality of generalized Kummer varieties

7.2.12. Theorem. — Assume that End(A) = Z, and let deg(λ) = d2 be the the
degree of the polarization λ : A→ A∨ of minimal degree. Assume that either

(i) 3 divides d, and that d/3 is a perfect square, or
(ii) gcd(3, d) = 1 and d ̸= 1, and that the Pell equation x2 − 3dy2 = 1 has some

solution with odd y.
Then we have isomorphisms

Bir(Kum2(A)) ≃ Aut(Kum2(A)) ≃ A[3] ⋊ AutAV(A),

where Bir(Kum2(A)) is the group of birational autoequivalences, and the action of
AutAV(A) on A[3] is the obvious one.

Proof. — Let n ≥ 3. In general, following [BNS11, §3.1], we have an injective
homomorphism

A⋊ AutAV(A) ≃ Aut(A) ↪→ Aut(Hilbn(A)),
and one calls automorphisms in the image of this map natural. A natural automorphism
of Hilbn(A) restricts to an automorphism of Kumn−1(A) if and only if it corresponds
to an element in A[3]⋊AutAV(A); these are called again natural. By [BNS11, Thm. 3,
Cor. 5], this leads to an injective homomorphism

A[3] ⋊ AutAV(A) ↪→ Aut(Kumn−1(A))

whose image consists of those automorphisms f : Kumn−1(A) ∼−→ Kumn−1(A) which
satisfy f(E) = E. Recall here that E ⊂ Kumn−1(A) denotes the exceptional divisor
of the Hilbert–Chow morphism, cf. ¶7.2.3; there exists a class δ ∈ NS(Kumn−1(A))
satisfying 2δ = [E], cf. ¶7.2.2. Now the condition f(E) = E is equivalent to f∗(δ) = δ,
since E is rigid, cf. ¶7.2.3.

Consider a birational equivalence f : Kum2(A) ∼99K Kum2(A). Exactly as in the
proofs of Theorems 7.2.1 and 7.2.8, we see that

f∗ : NS(Kum2(A)) ∼−→ NS(Kum2(A))

is the identity map. In particular, f∗ fixes some ample class (e.g. k · h− δ for k ≫ 1),
and since f is already an isomorphism in codimension 1, cf. ¶7.2.4, f extends to an
automorphism of Kum2(A). We conclude that

Bir(Kum2(A)) ≃ Aut(Kum2(A)).

Finally, since f∗(δ) = δ, the automorphism f must be natural.



APPENDIX A

Code listings

In the proof of Proposition 5.2.7 we encountered a concrete map d : S4 → Γ4⊗ZZ/4Z
which we claimed to be a cocycle. This can be computed by hand, but is a bit tedious.
So we implemented code in the GAP computer algebra system [GAP] which verifies
that d is a cocycle via a brute force computation, see Listing A.1 and an excerpt of its
output in Listing A.2.

Listing A.1. Verification of the cocycle appearing in the proof of Proposition 5.2.7
1 #␣Normalizes␣a␣representative,␣given␣as␣a␣4-tupel,␣of␣an␣element␣in␣the␣dual
2 #␣standard␣representation␣Γ4 ⊗Z Z/4Z.
3 normalize_elem␣:=␣function␣(v)
4 ␣␣return␣[(v[1]-v[4])␣mod␣4,␣(v[2]-v[4])␣mod␣4,␣(v[3]-v[4])␣mod␣4,␣0];
5 end;
6

7 #␣Check␣the␣cocycle␣condition␣for␣a␣map␣d : S4 → Γ4 ⊗Z Z/4Z.
8 check_derivation_rule␣:=␣function␣(d)
9 ␣␣local␣G,␣Elts,␣n,␣i,␣j,␣s,␣t,␣d_a,␣d_b;

10 ␣␣G␣:=␣SymmetricGroup(4);
11 ␣␣Elts␣:=␣Elements(G);
12 ␣␣n␣:=␣Length(Elts);
13 ␣␣for␣i␣in␣[1..n]␣do
14 ␣␣␣␣for␣j␣in␣[1..n]␣do
15 ␣␣␣␣␣␣s␣:=␣Elts[i];
16 ␣␣␣␣␣␣t␣:=␣Elts[j];
17 ␣␣␣␣␣␣Print("Checking␣",␣s,␣",␣",␣t,␣"\n");
18

19 ␣␣␣␣␣␣#␣Multiplication␣for␣cycles␣in␣GAP␣is␣backwards!
20 ␣␣␣␣␣␣#␣Also,␣GAP␣uses␣row␣vectors,␣hence␣a␣common␣matrix-vector␣product␣is␣v*M.
21 ␣␣␣␣␣␣d_a␣:=␣normalize_elem(d(t*s));
22 ␣␣␣␣␣␣d_b␣:=␣normalize_elem(d(s)␣+␣d(t)*PermutationMat(s,4));
23 ␣␣␣␣␣␣if␣d_a␣<>␣d_b␣then
24 ␣␣␣␣␣␣␣␣Print("Check␣failed\n");
25 ␣␣␣␣␣␣␣␣Print(d_a,␣"\n",␣d_b);
26 ␣␣␣␣␣␣␣␣return;
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27 ␣␣␣␣␣␣fi;
28 ␣␣␣␣od;
29 ␣␣od;
30 ␣␣Print("Check␣complete");
31 end;
32

33 #␣The␣following␣defines␣a␣1-cocylce␣from␣S_4␣to␣the␣dual␣standard␣representation.
34 #␣It␣was␣extended␣from␣d((1,2))=[0,0,2,0],␣d((2,3))=[2,0,0,0],␣d((3,4))=[0,2,0,0].
35 d␣:=␣function␣(s)
36 ␣␣if␣␣␣s␣=␣()␣␣␣␣␣␣␣␣␣then␣return␣[0,0,0,0];
37 ␣␣elif␣s␣=␣(1,2)␣␣␣␣␣␣then␣return␣[0,0,2,0];
38 ␣␣elif␣s␣=␣(2,3)␣␣␣␣␣␣then␣return␣[2,0,0,0];
39 ␣␣elif␣s␣=␣(1,3)␣␣␣␣␣␣then␣return␣[2,2,2,0];
40 ␣␣elif␣s␣=␣(1,2,3)␣␣␣␣then␣return␣[0,2,2,0];
41 ␣␣elif␣s␣=␣(1,3,2)␣␣␣␣then␣return␣[2,2,0,0];
42 ␣␣elif␣s␣=␣(3,4)␣␣␣␣␣␣then␣return␣[0,2,0,0];
43 ␣␣elif␣s␣=␣(1,2)(3,4)␣then␣return␣[2,0,2,0];
44 ␣␣elif␣s␣=␣(3,4,2)␣␣␣␣then␣return␣[2,0,2,0];
45 ␣␣elif␣s␣=␣(4,1,3)␣␣␣␣then␣return␣[2,0,2,0];
46 ␣␣elif␣s␣=␣(3,4,1,2)␣␣then␣return␣[0,2,0,0];
47 ␣␣elif␣s␣=␣(3,4,2,1)␣␣then␣return␣[0,2,0,0];
48 ␣␣elif␣s␣=␣(2,4)␣␣␣␣␣␣then␣return␣[0,0,2,0];
49 ␣␣elif␣s␣=␣(4,1,2)␣␣␣␣then␣return␣[0,0,0,0];
50 ␣␣elif␣s␣=␣(4,3,2)␣␣␣␣then␣return␣[2,2,0,0];
51 ␣␣elif␣s␣=␣(1,3)(2,4)␣then␣return␣[0,2,2,0];
52 ␣␣elif␣s␣=␣(4,3,1,2)␣␣then␣return␣[2,2,2,0];
53 ␣␣elif␣s␣=␣(4,1,3,2)␣␣then␣return␣[2,0,0,0];
54 ␣␣elif␣s␣=␣(1,4)␣␣␣␣␣␣then␣return␣[0,0,2,0];
55 ␣␣elif␣s␣=␣(4,2,1)␣␣␣␣then␣return␣[0,0,0,0];
56 ␣␣elif␣s␣=␣(4,1)(2,3)␣then␣return␣[2,2,0,0];
57 ␣␣elif␣s␣=␣(4,3,1)␣␣␣␣then␣return␣[0,2,2,0];
58 ␣␣elif␣s␣=␣(4,2,3,1)␣␣then␣return␣[2,2,2,0];
59 ␣␣elif␣s␣=␣(4,3,2,1)␣␣then␣return␣[2,0,0,0];
60 ␣␣fi;
61 end;

Listing A.2. Output of Listing A.1
1 #␣GAP␣4.12.2␣of␣2022-12-18
2 gap>␣check_derivation_rule(d);
3 Checking␣(),␣()
4 Checking␣(),␣(3,4)
5 Checking␣(),␣(2,3)
6 ␣· · ·

576 Checking␣(1,4)(2,3),␣(1,4)
577 Checking␣(1,4)(2,3),␣(1,4,2,3)
578 Checking␣(1,4)(2,3),␣(1,4)(2,3)
579 Check␣complete
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In Listing A.3 we implement the standard representation Γn of Sn and its dual Γ∨
n

in GAP and compute a few cohomology groups. We have included this code in order
to enable the reader to experiment concretely with the cohomology groups H•(Sn,Γn)
and H•(Sn,Γ∨

n). The code uses the GAP package hap, cf. [GAPhap].

Listing A.3. Implementation of the (dual) standard representation in GAP
1 #␣GAP␣4.12.2␣of␣2022-12-18
2 LoadPackage("hap");
3

4 #␣Compute␣cohomology␣up␣to␣degree␣d␣of␣Sn,␣for␣n > 2,␣with␣values␣in␣a␣representation
5 #␣Sn → GL(k,Z),␣which␣is␣specified␣on␣the␣generators␣(1, 2, . . . , n)␣and␣(1, 2).
6 SnRepCohomology␣:=␣function␣(MakeRepGenerators,n,d)
7 ␣␣local␣Sn,␣SnReso,␣SnGens,␣RepGroupGens,␣RepGroup,␣Rep,␣Cplx;
8 ␣␣Sn␣:=␣SymmetricGroup(n);
9 ␣␣SnReso␣:=␣ResolutionFiniteGroup(Sn,d+1);

10 ␣␣SnGens␣:=␣[CycleFromList([1..n]),␣(1,2)];
11 ␣␣RepGroupGens␣:=␣MakeRepGenerators(n);
12 ␣␣RepGroup␣:=␣Group(RepGroupGens);
13 ␣␣Rep␣:=␣GroupHomomorphismByImages(Sn,RepGroup,SnGens,RepGroupGens);
14 ␣␣Cplx␣:=␣HomToIntegralModule(SnReso,Rep);
15 ␣␣return␣List([0..d],␣i␣->␣Cohomology(Cplx,i));
16 end;
17

18 #␣Compute␣the␣permutation␣matrices␣of␣the␣standard␣(n − 1)-dimensional␣representation
19 #␣of␣Sn␣corresponding␣to␣the␣generators␣(1, 2, . . . , n)␣and␣(1, 2).
20 MakeStdRepGroupGens␣:=␣function␣(n)
21 ␣␣local␣gen1,␣gen2,␣i;
22 ␣␣gen2␣:=␣PermutationMat((1,2),n-1);
23 ␣␣gen1␣:=␣PermutationMat(CycleFromList([1..n-1]),n-1);
24 ␣␣for␣i␣in␣[1..n-1]␣do
25 ␣␣␣␣gen1[i][1]␣:=␣-1;
26 ␣␣od;
27 ␣␣gen1␣:=␣TransposedMat(gen1);
28 ␣␣return␣[gen1,gen2];
29 end;
30

31 #␣Compute␣cohomology␣up␣to␣degree␣d␣of␣Sn,␣for␣n > 2,␣with␣values␣in␣the␣standard
32 #␣(n − 1)-dimensional␣representation.
33 StdRepCohomology␣:=␣function␣(n,d)
34 ␣␣return␣SnRepCohomology(MakeStdRepGroupGens,n,d);
35 end;
36

37 StdRepCohomology(6,2);
38 >␣[␣[␣␣],␣[␣6␣],␣[␣2␣]␣]␣#␣H0(S6, Γ6) = 0,␣H1(S6, Γ6) = Z/6Z,␣H2(S6, Γ6) = Z/2Z
39 StdRepCohomology(5,2);
40 >␣[␣[␣␣],␣[␣5␣],␣[␣␣]␣]␣␣#␣H0(S5, Γ5) = 0,␣H1(S5, Γ5) = Z/5Z,␣H2(S5, Γ5) = 0
41
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42 #␣Compute␣the␣permutation␣matrices␣of␣the␣dual␣standard␣(n − 1)-dimensional
43 #␣representation␣of␣Sn␣corresponding␣to␣the␣generators␣(1, 2, . . . , n)␣and␣(1, 2).
44 MakeStdDualRepGroupGens␣:=␣function␣(n)
45 ␣␣local␣gen1,␣gen2,␣i;
46 ␣␣gen2␣:=␣PermutationMat((1,2),n-1);
47 ␣␣gen1␣:=␣PermutationMat(CycleFromList([1..n-1]),n-1);
48 ␣␣for␣i␣in␣[1..n-1]␣do
49 ␣␣␣␣gen1[n-1][i]␣:=␣-1;
50 ␣␣od;
51 ␣␣gen1␣:=␣TransposedMat(gen1);
52 ␣␣return␣[gen1,gen2];
53 end;
54

55 #␣Compute␣cohomology␣up␣to␣degree␣d␣of␣Sn,␣for␣n > 2,␣with␣values␣in␣the␣dual␣standard
56 #␣(n − 1)-dimensional␣representation.
57 StdDualRepCohomology␣:=␣function␣(n,d)
58 ␣␣return␣SnRepCohomology(MakeStdDualRepGroupGens,n,d);
59 end;
60

61 StdDualRepCohomology(4,2);
62 >␣[␣[␣␣],␣[␣␣],␣[␣2␣]␣]␣#␣H0(S4, Γ∨

4 ) = 0,␣H1(S4, Γ∨
4 ) = 0,␣H2(S4, Γ∨

4 ) = Z/2Z
63 StdDualRepCohomology(5,2);
64 >␣[␣[␣␣],␣[␣␣],␣[␣␣]␣]␣␣#␣H0(S5, Γ∨

5 ) = 0,␣H1(S5, Γ∨
5 ) = 0,␣H2(S5, Γ∨

5 ) = 0

A.0.1. — Regarding the correctness of the code in Listing A.3. Let n ≥ 3. Recall
that the symmetric group Sn is generated by the permutation cycles τ := (1 2)
and σ := (1 2 . . . n). Denote the standard basis of Zn by (ei)i . For the standard
representation Γn ↪→ Zn we pick the basis ei − en, with i = 1, . . . n− 1. Then τ and σ
correspond to the matrices

τ =̂


0 1 0 . . . 0
1 0
0 1
...

. . .
0 1

 and σ =̂


−1 −1 . . . −1

1 0 0
1 0

. . . . . .
1 0

 .

For the dual standard representation Γ∨
n ↞ Zn we choose the basis [ei], with

i = 1, . . . n− 1. Then τ and σ correspond to the matrices

τ =̂


0 1 0 . . . 0
1 0
0 1
...

. . .
0 1

 and σ =̂



0 . . . −1
1 0

1 0
...

. . . . . . −1
1 −1


.
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Summaries

Summary

Generalized Kummer varieties are one of the few known deformation families of
hyperkähler varieties. The latter can be viewed as a generalization of K3 surfaces
to higher dimensions, and have enjoyed much interest from algebraic geometers in
the last decades. In this thesis we study generalized Kummer varieties from the non-
commutative viewpoint of their associated derived categories, and we are particularly
interested in derived equivalences between them. Derived equivalence is a weaker
equivalence relation than the notion of isomorphism, and conjecturally it is also weaker
than birational equivalence in the setting of hyperkähler varieties.

In one of our main theorems, we exhibit derived equivalent ‘dual’ generalized
Kummer varieties and find among them examples which are not birationally equivalent;
thus answering a question raised by Namikawa, and going beyond the case of Kummer
K3 surfaces, which was already considered in the literature. Furthermore, we contribute
certain (short) exact sequences which provide many derived autoequivalences of
generalized Kummer varieties.

We build upon the derived McKay correspondence and the equivariant approach
employed by Ploog in his study of derived equivalence of Hilbert schemes of points
on K3 surfaces. A central technical ingredient in this thesis is the focused study of
the (dual) standard representation of the symmetric group from the viewpoint of
integral representation theory and group cohomology. We explain how to compute the
group cohomology in Nakaoka’s stable range of these representations with arbitrary
coefficients, given the group cohomology of the symmetric group itself.

Samenvatting

Gegeneraliseerde Kummer-variëteiten en deformaties daarvan zijn een van de weinige
bekende typen hyperkähler-variëteiten. Deze kunnen gezien worden als een general-
isatie van K3-oppervlakken naar hogere dimensies, en hebben de afgelopen decennia
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veel belangstelling genoten van algebraïsch meetkundigen. In dit proefschrift bestud-
eren we gegeneraliseerde Kummer-variëteiten vanuit het niet-commutatieve perspectief
van hun bijbehorende afgeleide categorieën, en we zijn vooral geïnteresseerd in afgeleide
equivalenties tussen deze variëteiten. Afgeleide equivalentie is een zwakkere equiv-
alentierelatie dan het begrip isomorfisme, en vermoedelijk is het ook zwakker dan
birationale equivalentie in het geval van hyperkähler-variëteiten.

In een van onze belangrijkste stellingen tonen we afgeleide equivalente ‘duale’
gegeneraliseerde Kummer-variëteiten en vinden we voorbeelden die niet birationaal
equivalent zijn; hiermee beantwoorden we een vraag van Namikawa en gaan we verder
dan het geval van Kummer K3-oppervlakken, dat al in de literatuur is behandeld.
Verder construeren we bepaalde (korte) exacte rijen die veel afgeleide auto-equivalenties
van gegeneraliseerde Kummer-variëteiten geven.

We bouwen voort op de afgeleide McKay-correspondentie en de equivariante be-
nadering van Ploog in zijn studie van afgeleide equivalenties van Hilbert-schema’s van
punten op K3-oppervlakken. Een centraal technisch ingrediënt in dit proefschrift is de
gerichte studie van de (duale) standaardrepresentatie van de symmetrische groep vanuit
het perspectief van de integrale representatietheorie en groepscohomologie. We leggen
uit hoe de groepscohomologie van deze representaties in Nakaoka’s stabiele bereik met
willekeurige coëfficiënten kan worden berekend, gegeven de groepscohomologie van de
symmetrische groep zelf.

Research Data Management

This thesis research has been carried out under the institute research data man-
agement policy of IMAPP, Radboud University. No data has been produced in this
project.
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